Meta-Analysis of Quantification Methods Shows that Archaea and Bacteria Have Similar Abundances in the Subseafloor

Abstract

The identities and biochemical properties of extracellular enzymes present in natural environments are poorly constrained. We used a series of competitive inhibition experiments with samples from a freshwater environment (the Tennessee River at Knoxville, TN, USA) and a marine environment (Bogue Sound, NC, USA) to characterize the range of substrate specificities of naturally occurring enzymes that hydrolyze L-leucine 7-amido-4-methylcoumarin (Leu-AMC), L‑proline-AMC (Pro-AMC), and L-arginine-AMC (Arg-AMC)—putative substrates for leucyl-aminopeptidase, prolyl-aminopeptidase, and arginyl-aminopeptidase, respectively. Extracellular peptidases which hydrolyzed Arg-AMC and Leu-AMC demonstrated affinity for up to 8 other amino acids, whereas those hydrolyzing Pro-AMC in the Tennessee River, and Arg-AMC at Bogue Sound, were more specific to proline and arginine, respectively. Patterns of substrate affinity showed that Leu-AMC (at both sampling sites) and Arg-AMC (at Bogue Sound) were primarily hydrolyzed by enzymes other than leucyl-aminopeptidase and arginyl-aminopeptidase, respectively. The set of naturally occurring peptidases in both environments showed greater affinity towards a subset of amino acids. These amino acids were on average larger, yielded more free energy from oxidation to CO2, and tended to be depleted in aged organic matter. These relationships indicate that pathways of amino acid diagenesis are at least partially controlled by the substrate specificities of the peptidases involved in protein degradation.

Publication
Applied and Environmental Microbiology

#

Avatar
Drew Steen
Assistant Professor of Microbiology and Earth and Planetary Sciences

We in the Steen Lab want to understand how microbes interact with organic matter in aquatic systems. To do that, I use the tools of organic geochemistry as well as microbial ecology. These questions have lead us to work on new approaches to analyze DNA sequences from environmental microbiomes and to study the distribution of taxa and functions across all of microbial life.