
2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-7281-1867-3/19/$31.00 ©2019 IEEE 1892

Unaligned Sequence Similarity Search Using Deep
Learning

James K. Senter∗, Taylor M. Royalty†, Andrew D. Steen ‡ and Amir Sadovnik§
∗§Department of Electrical Engineering and Computer Science

†‡Departments of Microbiology and Earth and Planetary Sciences
University of Tennessee - Knoxville

Knoxville, TN

Email: ∗jsenter3@utk.edu, †troyalty@vols.utk.edu, ‡asteen1@utk.edu, §asadovnik@utk.edu

Abstract—Gene annotation has traditionally required direct
comparison of DNA sequences between an unknown gene and
a database of known ones using string comparison methods.
However, these methods do not provide useful information when
a gene does not have a close match in the database. In addition,
each comparison can be costly when the database is large since
it requires alignments and a series of string comparisons. In
this work we propose a novel approach: using recurrent neural
networks to embed DNA or amino-acid sequences in a low-
dimensional space in which distances correlate with functional
similarity. This embedding space overcomes both shortcomings
of the method of aligning sequences and comparing homology.
First, it allows us to obtain information about genes which do not
have exact matches by measuring their similarity to other ones
in the database. If our database is labeled this can provide labels
for a query gene as is done in traditional methods. However, even
if the database is unlabeled it allows us to find clusters and infer
some characteristics of the gene population. In addition, each
comparison is much faster than traditional methods since the
distance metric is reduced to the Euclidean distance, and thus
efficient approximate nearest neighbor algorithms can be used to
find the best match. We present results showing the advantage of
our algorithm. More specifically we show how our embedding can
be useful for both classification tasks when our labels are known,
and clustering tasks where our sequences belong to classes which
have not been seen before.

Index Terms—Gene annotation, Comparative Genomics, Deep
Learning

I. INTRODUCTION

The central dogma of biology states that all organisms con-

tain DNA, which is transcribed into RNA and then translated

into proteins, which catalyze the chemical reactions that define

life. DNA sequences that encode for specific proteins are

known as genes. Thus, understanding the function of DNA

sequences that encode genes is a fundamental task across all

fields of biology.

In order to interpret sequence data, it is usually necessary

to annotate sequences identified as genes. This is commonly

done by aligning unknown sequences to ones of known

function using algorithms such as Basic Local Alignment

Search Tool (BLAST) [1] and comparing them based on the

fraction of identical nucleotides (or amino acids, after in silico

translation). Sequence identity comparisons are typically very

accurate when sequence identity is high, which is one of the

reasons these methods are so common in comparative ge-

nomics [2]. However, these methods do have downsides which

prevent them from being useful under certain conditions.

First, when using these methods there are still many genes

which cannot be annotated. For instance, in the Tara Oceans

set of shotgun metagenome sequences from the microbial

size fraction (generally 0.22 μm - 1.6 μ.m [3]), an average

of 50% and up to 80% of bacterioplankton genes lacked

sufficient homology to genes in databases of known function

to be confidently annotated [4]. This should be no surprise:

gene function is overwhelmingly studied in genes that derive

from microbes that grow in culture, whereas the vast majority

of microbes on Earth belong to uncultured taxa [5], [6].

Even ’successful’ annotations may be maddeningly vague, for

instance acyl carrier protein, porin, and peptidase, all of which

appear in the 100 most common annotations in the RefSeq

database of high-quality genomes [7].

Second, even high-quality annotations lose important infor-

mation, because many types of important sequence informa-

tion, such as relative amino acid content or factors that affect

temperature optima of gene products, are discarded during the

annotation process. These factors may be an important part of

differences in ecosystem function, but they would not show

up in ecosystem analyses based on annotations.

Finally, BLAST searches can be slow, especially when we

wish to compare our sequence to multiple others and not

just find the best match. This is mainly due to the need for

alignment and string comparison.

Here we embed DNA or amino acid sequences in a low-

dimensional space with a neural network combining con-

volutional and recurrent layers. The embedded data can be

searched much more rapidly thanks to dimensionality reduc-

tion. Furthermore, the convolutional layers of the network

allow recognition of important features while remaining robust

to sequencing error such as insertions or deletions, and the

LSTM layers capture long-term correlations in sequences

that may be biologically important but difficult to identify

in sequence alignments. Finally, this approach can identify

sequences that are similar in some biological respect but which

may not have any measurable sequence alignment, an ability

which may be useful in sequence analysis tasks other than978-1-7281-1867-3/19/$31.00 ©2019 IEEE

1893

sequence annotation, such as identifying properties of gene

products like temperature optima or enzyme lifetime.

Our paper is structured as follows. In Sec. II we discuss the

previous research on which our work is based. This includes

both work in bioinformatics regarding DNA sequence inter-

pretation, and recent machine learning research on sequence

classification and embedding space learning. In Sec. III we

motivate and describe the network architecture we use, and the

training method which allows us to learn a useful embedding

space. In Sec. IV we present results on multiple different

experiments, and analyze some of the parameters in order to

choose the ideal ones. Finally, we conclude in Sec. V.

II. RELATED WORK

A. DNA Sequence Interpretation

BLAST and its variants (e.g. gapped BLAST and PSI-

BLAST [8], BLAST+ [9]) have traditionally been used to

identify regions of sequence homology between a query se-

quence and database of reference sequences. The algorithm

includes 3 main steps. (1) A list is compiled of important

seeds (short strings of nucleotides or amino acids) appearing

in the query sequences. (2) The reference database is scanned

to find locations of of the same seeds, aided by an index of

seed locations. (3) Matches between query seeds and reference

seeds are extended to determine whether the areas neighboring

the seeds match as well as the seeds. For each query sequence,

the reference sequences with the best matches are returned.

Several improvements have been made to the original

BLAST. USEARCH [10] reduces search time by returning

only a few high-quality matches rather than considering all

possible matches. DIAMOND [11] constructs a double index

to traverse query and reference seeds more quickly. GPU-

BLAST [12], HPC-BLAST [13], and H-BLAST [14] paral-

lelize the database search on high-performance systems.

BLAST and its improvements all have the same search

limitation: They search for very close matches using certain

confidence levels, and do not provide distances to the entire

set (or subset). Comparing to all sequences would be very

expensive since it would require multiple alignments and

string comparisons. Our goal is to allow faster comparisons

by providing a significantly smaller numeric representation

of each protein in the database by preprocessing it with our

neural network. Euclidean distance on short vectors is a faster

similarity metric than string comparison on long sequences.

Also, clustering-based algorithms such as fast nearest neigh-

bors [15] or approximate nearest neighbor search algorithms

such as Neighborhood Graph and Tree [16] allow for nearest

neighbor search of the database in sub-linear time.

As a practical matter, Hidden Markov Models (HMMs) are

often part of gene annotation strategy, [17]. For instance, the

popular annotation package PROKKA [18] uses a hierarchical

strategy, beginning with BLAST+ searches of increasingly

expansive databases and ending with HMM searches of protein

family databases, e.g. [19]. However, these have their own lim-

itations as well. Mainly, since the DNA sequence is assumed

to be Markovian, it means that the state transitions depend

only on the current state and not anything in the past. This is

most likely not physically true for genetic data, and although

we can alter the HMMs to consider previous states as well, we

must define exactly how many previous states will be included.

Our approach is to embed sequences in a lower-dimensional

space, and to use those vectors for comparison. This has been

done in a few previous works. One technique to embedding

a DNA sequence is [20], which uses a word2vec model to

encode short sequences. DSPACE [21] is more similar to

our approach, training a neural network to embed amino

acid sequences for multiple supervised tasks. Unlike these

models, we introduce LSTM layers which allows dealing

with sequences of different lengths in addition to capturing

dependencies which are distant in the sequence (as opposed

to convolutional layers which only capture local patterns) .

Our network structure is inspired by DanQ [22], which uses

1-dimensional convolutional layers followed by LSTM layers.

The convolutional layers recognize short-term patterns, while

the LSTM layers recognize long-term patterns, making the

combination stronger than either half alone. We adapt this

structure by adding bidirectionality and the possibility to deal

with varying length sequences to produce embeddings and

show that this network is more accurate than DSPACE, which

only includes convolutional and dense layers.

B. Deep Learning on Sequences

Machine learning using sequence data is not a new problem

and has been studied extensively for many years, particularly

in the natural language processing community. One of the

early methods used for this type of data was the HMM [23]

which is a statistical model in which the process is Markovian

with observable (the signal) and hidden (the prediction) events.

Machine learning can be used to find the HMM parameters

and dynamic programming (for example the Viterbi algorithm

[24]) can then be used to find the maximum likelihood

predictions. These methods have been used for many different

types of sequence data such as speech recognition [25] and

gene finding [26].

More recently, with the advent of deep learning algorithms,

a new set of machine learning algorithms has been developed

which is not limited by the same constraints and therefore is

able to achieve much better results. More specifically, recurrent

neural networks (RNNs) have been able to achieve excellent

prediction results on sequences since they can utilize high

dimensional hidden states which can remember an unlimited

amount of past information [27]. This allows the network to

discover much longer temporal dependencies as compared to

HMMs. One type of RNN, the long short-term memory net-

work (LSTM) [28], has been especially successful in achieving

state of the art results on a variety of tasks as it is able to

better learn long term dependencies [29]. Finally, bidirectional

RNN’s [30] have been used for prediction in both the forward

and backward directions of the sequence.

In this work we adopt these methods to work on DNA

sequences. More specifically, we use bidirectional LSTM’s on

1894

top of convolutional layers to predict the protein class of an

unknown gene.

C. Learning Embedding Spaces

The process of training a neural network on one task

and using an intermediate layer of that network to create

an embedding space for different tasks has been applied in

different domains. For example, word2vec [31] learns a vector

representation of words by training a network to predict future

words from past words, and the resulting embedding places

words with similar meaning closer together.

VGG-Face [32] creates an embedding of faces, for use in

face recognition: learning the distinguishing features of each

face regardless of position, lighting, etc. As not all identities

are known at training time it is not possible to build a simple

face classifier, and therefore the task is to determine if two

faces are of the same person. This is accomplished by learning

an embedding in which faces of the same person are close

to each other, while faces of different people are far in the

embedding space. They use two different types of training:

either using triplet loss to train the embedding directly, or

training a classifier and removing the final layer to get the

embedding. In our work we adopt the latter.

The concept is the same across domains: a high-dimensional

input space is converted to a low-dimensional space containing

the most important features of each element for a specific task.

The distance between two elements in this low dimensional

space is a measure of their similarity, useful for many tasks

beyond the original training task. For example word2vec

vectors can be used for sentiment analysis [33], while VGG-

Face embeddings can be used to search for lookalikes [34].

In this work we use deep neural networks to learn an

embedding space for DNA sequences. Similar to VGG-Face

[32] we assume that we don’t know all protein classes ahead

of time and therefore cannot rely on a classifier. In addition,

as has been shown, we expect these embeddings to be useful

for other tasks as well. Although we use a similar training

setup to VGG-Face, our network architecture is different than

theirs as we are dealing with sequence data and therefore use

RNN’s.

III. METHODS

We frame the original problem we are trying to solve in the

following way. Given a query DNA sequence xq , we wish to

label it with a protein label yq (i.e. N-acetyltransferase) . In
addition, we have a database of N other DNA sequencesXd =
[xd1, xd2...xdN], each with its own label Yd = [yd1, yd2...ydN].
We wish to compare xq to all sequences in Xd in order to

find a match, and transfer the label. For example, if the best

match to our query sequence xq is xdm, we can simply give

it the label yq = ydm. This matching process can be done
using algorithms such as FASTA [35] and BLAST [1] which

provide a matching score between two sequences.

However, as these algorithms require alignments and string

comparisons they can only return a few best matches. In

addition, these algorithms have no direct way to measure the

importance of certain subsequences. Therefore, in this work

we propose a different way to compare the sequences. We

first learn an embedding method f(x; θ) ∈ R
d. The function

embeds a varying length sequence into a d-dimensional Eu-
clidean space. Once we have learned such an embedding, the

similarity between two sequences (regardless of their length)

can be found simply by calculating their Euclidean distance

||f(xq; θ)− f(xdm; θ)||.
The function’s parameters θ can be learned using our labeled

database. The goal of learning would be to create a space

where genes with similar function are close to each other as

compared to ones with different function. That is:

||f(xa; θ)− f(xb; θ)|| < ||f(xa; θ)− f(xc; θ)|| (1)

Where xa and xb are both labeled with ya and xc is not

labeled with ya. Learning a space in which Eq. 1 is true
gives us the advantage of being able to do more than simply

label the sequence xq using our known database. For example,

given distances to multiple other sequences in Xd we can infer

something about the functionality of the query sequence. In

addition, given a group of unknown genes, we can use the

embedding space to cluster them, thus finding out how many

types of genes there are and how they relate to each other.

Similarly to other works in computer vision we can do

this by first training a deep neural network classifier on a

large number of classes using our labeled database Xd, Yd.

We can view the output of the network’s penultimate layer as

the embedding vector f(x; θ). The final dense layer can be
viewed as a linear classifier over the embedding layer, and

therefore we expect genes of similar function to be close in

the embedding space.

Therefore, although we use the classification layer for

training and to test our classification task, it is removed when

comparing sequences to one another. By simply calculating the

Euclidean distance of the output vectors from the embedding

layer we can measure the similarity between sequences.

A. Network Architecture

Our network is detailed in Figure 1. The input to the

network is a 4500 × 4 matrix. The columns represent a one-
hot encoding of the 4 nucleotides (A,C,G, T) and the rows
represent the maximum length of a sequence. For example,

a value of 1 at position (0, 0) means that the first nucleotide
in the sequence is A and positions (0, 1), (0, 2), (0, 3) will be
zero. If a sequence is shorter than 4500, all the extra columns

are set to 0. Masking is applied so that the zero padding does
not affect the final result.

The first layer is a 1D convolution (stride 3, kernel size 3, 26

filters) to represent encoding of every 3 nucleotides into amino

acids. Another 1D convolutional layer (stride 1, kernel size 26,

320 filters) followed by a max pooling layer (stride 13, kernel

size 13) reduces the size of the sequence and represents short

patterns of amino acids. The sequence then passes through

a bidirectional LSTM layer (output size 640), retaining an

output for each step of the sequence. This layer captures long-

term trends in the sequence regardless of direction. Next, a

1895

Fig. 1. Network architecture, including sizes for each layer and output. All
layers are presented except for the non-linear activations. Notice that the top
layer (Dense) is only used for training and during the classification task.
For embedding we remove this layer and directly use the 256 length vector
produced by the LSTM. Details are provided in Sec. III-A.

forward LSTM layer, retaining only the output from the last

step, collects a summary of the sequence. The output from the

final LSTM layer is the embedding: a 256 length vector.

For training through classification, the embedding layer is

followed by a dense layer with output size equal to the number

of classes. Training is performed by minimizing the cross

entropy loss using batch gradient decent. Given that the final

dense layer is a simple linear classifier, the embedding should

learn features that are useful for classification without itself

being tied to specific classes. The convolutional layers have

ReLU activation, the LSTM layers have tanh activation, and

the final class layer has softmax activation.

For comparison we also trained a DSPACE model, using the

same architecture as in the source code of [21], with an extra

stride 3 convolutional layer after the input to account for using

DNA sequences instead of amino acid sequences. The inputs

to this sequence are the same: length-4500 sequences with

extra space padded with zeros, but masking was not possible

as this model requires inputs of a fixed length. This network

contains several 1D convolutional layers followed by several

dense layers, culminating in an embedding layer. After the

embedding layer, we replaced their output layers with a dense

layer for class prediction.

We plan on releasing all of our code and models as part

of the publication of this paper. In addition we will release

the data-sets we used to train and test the models to ensure

reproducibility.

ABC transporter ATP-binding protein MFS transporter
LysR family transcriptional regulator transcriptional regulator
ABC transporter permease membrane protein
DNA-binding response regulator N-acetyltransferase
TetR/AcrR family transcriptional regulator alpha/beta hydrolase

TABLE I
THE TOP 10 PROTEIN CLASSES IN OUR SUBSET OF THE REFSEQ DATASET
[7]. THESE PROVIDE AN EXAMPLE OF THE TYPE OF CLASSES WE ARE

USING FOR CLASSIFICATION.

B. Classification Training

We used protein sequences from the RefSeq database [7],

v83, filtered to contain only bacteria and archaea. Our first

training set consisted of approximately 40 million sequences

from the 30 most common classes. As an example we show

the top 10 class names in Table I. The training set and the

test set had the same proportion of each class. We then

collected separate datasets containing the most common 100

and 1000 classes. For better training efficiency, we did not

use all sequences from these classes, keeping only about 16

million sequences per dataset with equal representation for

each class. Each training dataset had a corresponding test set

of approximately 1 million sequences, also with equal numbers

of examples from each class.

We trained our model on each of the 30, 100, and 1000

class datasets, plus a DSPACE model on the 100 class dataset.

The models were trained to minimize categorical cross entropy

loss using an Adam (for LSTM) or Nadam (for DSPACE)

optimizer with learning rate 0.001. Each network was trained

on 200,000 random batches of 100 sequences. Training a

model on a Quadro P5000 GPU took approximately two days.

C. Embedding Analysis

To test the quality of each embedding on unseen classes,

we arbitrarily chose 1000/10,000 classes not used for training.

From each class we chose a random pair of sequences, and

treated the first of each pair as a query xq , while the second

sequences of all pairs were the database Xd. If the embedding

accurately reflects the biological function of the sequence, two

sequences belonging to the same class should be closer in the

embedding space than two from different classes (Eq. 1).

We therefore found the Euclidean distance from each query

sequence to the entire database, producing a ranking of the

most similar genes from the database. Then, we determined

how many queries had the correct answer (the sequence from

the same class) within the top N closest database sequences,

where N = 1, 10, 20, or 50. The fraction of gene pairs placed

close together by the embedding (with several definitions

of closeness) is similar to the information retrieval measure

”recall-at-n” and is a way to quantify the embedding, or how

well the model can group proteins from classes never seen

before.

IV. RESULTS

A. Classification Results

We first present the results of using our neural network

architecture for classification; that is, both the training set and

1896

Model Test Accuracy
30 class LSTM .968
100 class LSTM .914
1000 class LSTM .896
100 class DSPACE .832

TABLE II
ACCURACY ON TEST DATA WHEN TRAINING AND TESTING OUR NETWORK
WITH DIFFERENT AMOUNTS OF CLASSES. WE ALSO COMPARE TO OTHER

PREVIOUSLY PUBLISHED NETWORK ARCHITECTURE DSPACE [21].

Fig. 2. The confusion matrix for our 30 class model. The colors scale from
dark blue (100%) to white (0%). Notice how all classes are nearly classified
perfectly except for one class due to our ground truth labels. More information
is given in Sec. IV-A .

the test set contain DNA sequences with the same protein

labels. The number of classes and division between training

and test set are described in Sec. III-B.

Table II shows the accuracy on the test set for a different

number of classes. In addition, we compare our results with the

DSPACE model [21]. As expected, as the number of classes

increases our results slightly decrease since there is more

chance for error. However, even when the number of classes is

multiplied by 10 (from 100 to 1000) the accuracy only drops

by a few percent showing that the network scales well. Our

model clearly outperforms the DSPACE baseline and shows

that the network is able to label DNA sequences from classes

it has been trained on.

Fig. 2 shows the confusion matrix based on our 30 class

model. It adds another way to interpret the results, and empha-

sizes a flaw in the data and labels we are using. Although our

total classification rate for the 30 class model is 96.8%, when

looking at the confusion matrix it is clear that most classes

achieve a very high precision, with only one class achieving a

32% accuracy (class 18), which is mostly classified as class 7.

However, the labels of these classes are ”N-acetyltransferase”

(7) and ”GNAT family N-acetyltransferase”(18), which are

essentially the same protein but are separated into two different

classes in the RefSeq dataset. This ‘error’ suggests that the

network has correctly learned that two differently named

classes refer to the same broad set of sequences.

B. DNA Sequence Embedding Results

Next we present results to show that our embedding space is

meaningful even for DNA sequences which are not from the

classes which appeared in the training data. We remove the

final classification layer from the network and use the testing

strategy discussed in Sec. III-C.

Tables III and IV show results of the embedding analysis

with pairs of sequences from 1000 and 10,000 classes, re-

spectively. As expected the probability of having the closest

sequence be of the same class as the query one is lower than

our classification results. However, it is important to look at

the entire table to realize the advantages our method provides.

For example, when training on 1000 classes the most similar

sequence is of the same class 53% of the time (Table III).

When comparing this to a random chance of 0.1% this is an

impressive result especially given that these classes have never

been seen by the network and there is only one matching

sequence in our database.

In addition, if we do not only focus on the closest sequence,

but instead look at the top N sequences, we see that although

the correct match is not always ranked the highest, it is usually

ranked high. For example, when examining the top 50 classes

out of 10,000 (0.5% of the results) the correct result is there

70% of the time. This result suggests a hybrid annotation

strategy in which sequences are embedded, provided a rough

annotation, and then aligned against sequences of known

function (e.g. using BLAST) on a much smaller subset of that

database.

A few other observations can be made when analyzing

the results. First, as the number of classes used for training

increases (30, 100, 1000) so does the accuracy of the em-

beddings. This is reasonable since the network can generalize

better when ”seeing” more classes during training. In addition,

when we increase our database size by 10 fold from 1000 to

10,000 (comparing table III to IV), the accuracy does not drop

by much showing that our method is relatively robust to the

size of the database.

Table V repeats the embedding experiment comparing dif-

ferent embedding layer sizes on the 100 class LSTM model.

Embedding quality increased from 128 to 256, but decreased

from 256 to 512, suggesting that if the embedding becomes

too large, overfitting on the training data reduces the ability

to embed unknown classes.

In order to visualize our embedding space, we use t-

SNE from Scikit-learn [36], to transform 100 length-256

embeddings from each of 10 classes into a 2-dimensional

space, where close vectors in the 256-dimensional space are

also close in the 2-dimensional space. The embeddings were

generated by the 100-class model using sequences from the

test data, from 10 classes that were also used in training. The

result in Figure 3 reveals that our embedding can in fact place

similar sequences close together.

C. Length Analysis

One of our concerns was that the classifier was making

decisions simply based on the length of each sequence rather

1897

Fig. 3. t-SNE visualization of embedded sequences from 10 protein classes
using our 100-class model, each in a different color.

Model N=1 N=10 N=20 N=50
30 class LSTM .252 .423 .488 .591
100 class LSTM .350 .598 .680 .793
1000 class LSTM .530 .715 .744 .790
100 class DSPACE .231 .360 .416 .502

TABLE III
FRACTION OF QUERY SEQUENCES WITH A CORRECT MATCH IN THE TOP N

MATCHES FOR EACH MODEL, OUT OF 1000 CLASS PAIRS.

than its content. Therefore, we compared the lengths of

sequences correctly classified by the 100-class LSTM model

to the lengths of incorrectly classified sequences in the test

set with 1 million examples. The results in Figure 4 indicate

that while correct sequences are more likely to be close to the

mean, for a given difference in length the accuracy does not

change much. Therefore, length is not an important factor in

the classifier’s decision.

D. Noise Analysis

To test how robust our model is to noise and mutations in

a DNA sequence, we performed alterations on each sequence

Model N=1 N=10 N=20 N=50
30 class LSTM .190 .272 .301 .364
100 class LSTM .253 .378 .434 .526
1000 class LSTM .389 .592 .641 .701
100 class DSPACE .202 .273 .299 .346

TABLE IV
FRACTION OF QUERY SEQUENCES WITH A CORRECT MATCH IN THE TOP N

MATCHES FOR EACH MODEL, OUT OF 10000 CLASS PAIRS.

Embedding Size N=1 N=10 N=20 N=50
128 .338 .591 .674 .767
256 .350 .598 .680 .793
512 .326 .508 .585 .671

TABLE V
FRACTION OF QUERY SEQUENCES WITH A CORRECT MATCH IN THE TOP N
MATCHES FOR EACH MODEL, OUT OF 1000 CLASS PAIRS. COMPARISON OF
DIFFERENT EMBEDDING SIZES USING THE 100-CLASS LSTM MODEL.

in the 100-class test set and examined how they affect test

accuracy. We tried two noise sources:

• A simple probabilistic model of read noise from [37].

The basic idea is that we go through the sequence and

change each base independently with a given probability

p.
• We also look at how the network behaves when part of
the sequence is missing. We randomly select a starting

base from our sequence and then remove p percent of
the total sequence length.

Figure 5 shows how accuracy decreases as a function

of p for both noise sources. As expected, large mutations
harm accuracy, but overall the model is able to handle small

mutations without significant error.

We note that we removed only parts of the sequences start-

ing at a location divisible by 3. Since our model depends on

converting groups of 3 nucleotides to an amino acid, accuracy

for deletions decreased significantly if the deleted segment

was not aligned by groups of 3. For example, removing a

single nucleotide from the sequence will cause all amino acid

encodings after that nucleotide to be changed.

We were able to handle completely random removals by

changing the stride on the first layer of our network from 3 to

1, so that every possible group of 3 nucleotides is considered.

When training with stride 1, there was no difference between

the classification accuracies with or without alignment. How-

ever, test accuracy decreased slightly on non noisy examples

and training took significantly longer.

V. CONCLUSION

In this work we presented a novel method for classifying and

embedding DNA sequences. Using this method in conjunction

with fast nearest neighbor algorithms we can find best matches

to a query sequence even if it is from a previously unseen

class. More importantly, using this embedding space provides

not only a simple best match, but also distances to other

sequences, thus providing functional information even for

sequences which do not have an exact match in our database.

We measure the robustness of our method both to dealing with

unseen classes and to dealing with different noise sources.

We leave empirical performance comparison of our method

to BLAST as future work. BLAST generated the ground

truth labels used to train our model, so a fair comparison

of the approaches would require a separate dataset. Then,

an ideal performance comparison would involve measuring

the time to compare an unknown sequence to a database of

known sequences for each method, not including setup time

(such as training a model). Our approach would require an

initial investment of time to train the model and generate

embeddings for each sequence in the database, but we hope

that by reducing the dimensionality of the data, this investment

can speed up all future sequence comparisons. For now, we

simply present a proof of concept rather than claiming that

our method is faster than BLAST.

We expect this type of work to be useful for many ap-

plications besides simple gene annotation. For example, we

1898

Fig. 4. The probability distributions of sequence length (left) and distance from mean sequence length (right) for correct and incorrect examples (each adds
up to 1). The fact that the percentage of correct vs. incorrect classifications stays relatively constant, shows that our network is not relying heavily on the
sequence length.

Fig. 5. The accuracy of our classification model under different noise sources
as a function of the amount of noise. See Sec. IV-D for more details.

have begun working on using these embeddings to characterize

microbial biogeographic provinces in the ocean. The basic

idea is to embed ocean sequence data collected from different

regions and examine if certain regions are more similar in our

embedding space than others. This problem would be hard to

solve using traditional comparative genomics methods as many

of the genes are unknown and it would be very expensive to do

a comprehensive BLAST comparison. Our initial results show

that these embeddings lead to plausible groupings of regions.

Although we show promising results in this paper, more

work needs to be done to understand the full potential from

our method. For example, as described in Sec. IV-A, given the

dataset used, accuracy is not expected to be perfect because

of the ground truth classes given. The class labels used for

training the classifier are not mutually exclusive and therefore

confusion between such classes is expected due to the overlap.

This is a difficult biological problem, because experimental

determination of gene function is labor intensive [38] and

virtually all gene databases are polluted by annotation errors

[39]–[41]. More accurate results will require non-overlapping,

error-free databases.

In addition, 1000 random classes (the largest number of

classes we used for training) might not be representative

enough of the entire database. More work can be done both

in examining the effect of using larger amounts of classes for

training and how to select a diverse set of classes to better

represent the entire genome.

Finally, we are currently further examining the parameter

space and architecture changes which will lead to better

embeddings. For example, instead of training using a classifi-

cation layer we are experimenting with using triplet-loss [42]

to train the embedding layer directly. This has led to improved

embeddings for face recognition and therefore we expect to

see an improvement in our embeddings as well.

However, even with these limitations, the results presented

in this work reveal that our embedding is indeed capable of

placing sequences with similar function close together, even

when that class is not seen in training. Beyond simply speeding

up the search for similar proteins, an embedding could allow

prediction of protein function and properties, and lead to new

ways of using sequence data in biology research.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by (1) the

University of Tennessee, Knoxville College of Arts and Sci-

ences, (2) Tickle College of Engineering, and (3) the Joint

Institute for Computational Sciences. Any opinions, findings,

conclusions, or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the University of Tennessee or Intel Corporation.

REFERENCES

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of molecular biology, vol.
215, no. 3, pp. 403–410, 1990.

1899

[2] B. Rost, “Enzyme function less conserved than anticipated,” Journal of
molecular biology, vol. 318, no. 2, pp. 595–608, 2002.

[3] S. Pesant, F. Not, M. Picheral, S. Kandels-Lewis, N. Le Bescot,
G. Gorsky, D. Iudicone, E. Karsenti, S. Speich, R. Troublé et al., “Open
science resources for the discovery and analysis of tara oceans data,”
Scientific data, vol. 2, p. 150023, 2015.

[4] S. Sunagawa, L. P. Coelho, S. Chaffron, J. R. Kultima, K. Labadie,
G. Salazar, B. Djahanschiri, G. Zeller, D. R. Mende, A. Alberti et al.,
“Structure and function of the global ocean microbiome,” Science, vol.
348, no. 6237, p. 1261359, 2015.

[5] A. D. Steen, A. Crits-Christoph, P. Carini, K. M. DeAngelis, N. Fierer,
K. G. Lloyd, and J. C. Thrash, “High proportions of bacteria and archaea
across most biomes remain uncultured,” The ISME journal, pp. 1–5,
2019.

[6] K. G. Lloyd, A. D. Steen, J. Ladau, J. Yin, and L. Crosby, “Phyloge-
netically novel uncultured microbial cells dominate earth microbiomes,”
MSystems, vol. 3, no. 5, pp. e00 055–18, 2018.

[7] N. A. O’Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad,
R. McVeigh, B. Rajput, B. Robbertse, B. Smith-White, D. Ako-
Adjei, A. Astashyn, A. Badretdin, Y. Bao, O. Blinkova, V. Brover,
V. Chetvernin, J. Choi, E. Cox, O. D. Ermolaeva, C. M. Farrell,
T. Goldfarb, T. Gupta, D. H. Haft, E. Hatcher, W. Hlavina, V. S. Joardar,
V. K. Kodali, W. Li, D. R. Maglott, P. Masterson, K. M. McGarvey,
M. R. Murphy, K. O’Neill, S. Pujar, S. H. Rangwala, D. Rausch, L. D.
Riddick, C. L. Schoch, A. Shkeda, S. S. Storz, H. Sun, F. Thibaud-
Nissen, I. Tolstoy, R. E. Tully, A. R. Vatsan, C. Wallin, D. Webb, W. Wu,
M. J. Landrum, A. Kimchi, T. A. Tatusova, M. DiCuccio, P. A. Kitts,
T. D. Murphy, and K. D. Pruitt, “Reference sequence (refseq) database
at ncbi: current status, taxonomic expansion, and functional annotation.”
Nucleic Acids Research, vol. 44, no. Database-Issue, pp. 733–745, 2016.

[8] S. F. Altschul, T. L. Madden, A. A. Schffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs,” Nucleic Acids
Research, vol. 25, no. 17, pp. 3389–3402, 09 1997. [Online]. Available:
https://doi.org/10.1093/nar/25.17.3389

[9] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos,
K. Bealer, and T. L. Madden, “Blast+: architecture and applications,”
BMC bioinformatics, vol. 10, no. 1, p. 421, 2009.

[10] R. C. Edgar, “Search and clustering orders of magnitude faster than
BLAST,” Bioinformatics, vol. 26, no. 19, pp. 2460–2461, 08 2010.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btq461

[11] B. Buchfink, C. Xie, and D. H. Huson, “Fast and sensitive protein
alignment using diamond,” Nature methods, vol. 12, no. 1, p. 59, 2015.

[12] P. D. Vouzis and N. V. Sahinidis, “Gpu-blast: using graphics processors
to accelerate protein sequence alignment,” Bioinformatics, vol. 27, no. 2,
pp. 182–188, 2010.

[13] S. E. Sawyer, B. Rekepalli, M. D. Horton, and R. G. Brook, “Hpc-
blast: distributed blast for xeon phi clusters,” in Proceedings of the 6th
ACM Conference on Bioinformatics, Computational Biology and Health
Informatics. ACM, 2015, pp. 512–513.

[14] W. Ye, Y. Chen, Y. Zhang, and Y. Xu, “H-BLAST: a fast protein
sequence alignment toolkit on heterogeneous computers with GPUs,”
Bioinformatics, vol. 33, no. 8, pp. 1130–1138, 01 2017. [Online].
Available: https://doi.org/10.1093/bioinformatics/btw769

[15] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340,
p. 2, 2009.

[16] M. Iwasaki and D. Miyazaki, “Optimization of indexing based on k-
nearest neighbor graph for proximity search in high-dimensional data,”
arXiv preprint arXiv:1810.07355, 2018.

[17] S. R. Eddy, “Accelerated profile hmm searches,” PLoS computational
biology, vol. 7, no. 10, p. e1002195, 2011.

[18] T. Seemann, “Prokka: rapid prokaryotic genome annotation,” Bioinfor-
matics, vol. 30, no. 14, pp. 2068–2069, 2014.

[19] D. H. Haft, J. D. Selengut, R. A. Richter, D. Harkins, M. K. Basu,
and E. Beck, “Tigrfams and genome properties in 2013,” Nucleic acids
research, vol. 41, no. D1, pp. D387–D395, 2012.

[20] S. Woloszynek, Z. Zhao, J. Chen, and G. L. Rosen, “16s rrna sequence
embeddings: Meaningful numeric feature representations of nucleotide
sequences that are convenient for downstream analyses,” PLoS compu-
tational biology, vol. 15, no. 2, p. e1006721, 2019.

[21] A. S. Schwartz, G. J. Hannum, Z. R. Dwiel, M. E. Smoot, A. R. Grant,
J. M. Knight, S. A. Becker, J. R. Eads, M. C. LaFave, H. Eavani et al.,

“Deep semantic protein representation for annotation, discovery, and
engineering,” BioRxiv, p. 365965, 2018.

[22] D. Quang and X. Xie, “Danq: a hybrid convolutional and recurrent deep
neural network for quantifying the function of dna sequences,” Nucleic
acids research, vol. 44, no. 11, pp. e107–e107, 2016.

[23] L. E. Baum and J. A. Eagon, “An inequality with applications to
statistical estimation for probabilistic functions of markov processes and
to a model for ecology,” Bulletin of the American Mathematical Society,
vol. 73, no. 3, pp. 360–363, 1967.

[24] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, 1967.

[25] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[26] A. V. Lukashin and M. Borodovsky, “Genemark. hmm: new solutions
for gene finding,” Nucleic acids research, vol. 26, no. 4, pp. 1107–1115,
1998.

[27] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with
recurrent neural networks,” in Proceedings of the 28th International
Conference on Machine Learning (ICML-11), 2011, pp. 1017–1024.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[29] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[30] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[32] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face recognition.”
in bmvc, vol. 1, no. 3, 2015, p. 6.

[33] D. Zhang, H. Xu, Z. Su, and Y. Xu, “Chinese comments sentiment
classification based on word2vec and svmperf,” Expert Systems with
Applications, vol. 42, no. 4, pp. 1857 – 1863, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417414005508

[34] A. Sadovnik, W. Gharbi, T. Vu, and A. Gallagher, “Finding your looka-
like: Measuring face similarity rather than face identity,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2018, pp. 2345–2353.

[35] W. Pearson, “Finding protein and nucleotide similarities with fasta,”
Current protocols in bioinformatics, vol. 4, no. 1, pp. 3–9, 2003.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[37] A. Motahari, K. Ramchandran, D. Tse, and N. Ma, “Optimal dna shotgun
sequencing: Noisy reads are as good as noiseless reads,” in 2013 IEEE
International Symposium on Information Theory, July 2013, pp. 1640–
1644.

[38] K. Michalska, A. D. Steen, G. Chhor, M. Endres, A. T. Webber, J. Bird,
K. G. Lloyd, and A. Joachimiak, “New aminopeptidase from microbial
dark matter archaeon,” The FASEB Journal, vol. 29, no. 9, pp. 4071–
4079, 2015.

[39] M. Green and P. Karp, “Genome annotation errors in pathway databases
due to semantic ambiguity in partial ec numbers,” Nucleic acids re-
search, vol. 33, no. 13, pp. 4035–4039, 2005.

[40] C. E. Jones, A. L. Brown, and U. Baumann, “Estimating the annotation
error rate of curated go database sequence annotations,” BMC bioinfor-
matics, vol. 8, no. 1, p. 170, 2007.

[41] A. M. Schnoes, S. D. Brown, I. Dodevski, and P. C. Babbitt, “Annotation
error in public databases: misannotation of molecular function in enzyme
superfamilies,” PLoS computational biology, vol. 5, no. 12, p. e1000605,
2009.

[42] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 815–
823.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

