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Abstract 14 

Widely used microbial taxonomies, such as the NCBI taxonomy, are based on a combination of 15 

sequence homology among conserved genes and historically accepted taxonomies, which were 16 

developed based on observable traits such as morphology and physiology. A recently-proposed 17 

alternative taxonomy, the Genome Taxonomy Database (GTDB), incorporates only sequence homology 18 

of conserved genes and attempts to partition taxonomic ranks such that each rank implies the same 19 

amount of evolutionary distance, regardless of its position on the phylogenetic tree. This provides the 20 

first opportunity to completely separate taxonomy from traits, and therefore to quantify how taxonomic 21 

rank corresponds to traits across the microbial tree of life. We quantified the relative abundance of 22 

clusters of orthologous group functional categories (COG-FCs) as a proxy for traits within the lineages 23 

of 13,735 cultured and uncultured microbial lineages from a custom-curated genome database. On 24 

average, 41.4% of the variation in COG-FC relative abundance is explained by taxonomic rank, with 25 

domain, phylum, class, order, family, and genus explaining, on average, 3.2%, 14.6%, 4.1%, 9.2%, 26 

4.8%, and 5.5% of the variance, respectively (p<0.001 for all). To our knowledge, this is the first work 27 

to quantify the variance in metabolic potential contributed by individual taxonomic ranks. A qualitative 28 

comparison between the COG-FC relative abundances and genus-level phylogenies, generated from 29 

published concatenated protein sequence alignments, further supports the idea that metabolic potential is 30 

taxonomically coherent at higher taxonomic ranks. The quantitative analyses presented here characterize 31 

the integral relationship between diversification of microbial lineages and the metabolisms which they 32 

host. 33 

 Importance 34 

Recently there has been great progress in defining a complete taxonomy of bacteria and archaea, 35 

which has been enabled by improvements in DNA sequencing technology and new bioinformatic 36 

techniques. A new, algorithmically-defined microbial tree of life describes those linkages relying solely 37 



on genetic data, which raises the question of how microbial traits relate to taxonomy. Here, we adopted 38 

cluster of orthologous group functional categories as a scheme to describe the genomic contents of 39 

microbes, which can be applied to any microbial lineage for which genomes are available. This simple 40 

approach allows quantitative comparisons between microbial genomes with different gene composition 41 

from across the microbial tree of life. Our observations demonstrate statistically significant patterns in 42 

cluster of orthologous group functional categories at the taxonomic levels spanning from domain to 43 

genus.  44 

Introduction 45 

The relationship between microbial taxonomy and function is a longstanding problem in 46 

microbiology (1–3). Prior to the identification of the 16S rRNA gene as a taxonomic marker, microbial 47 

phylogenetic relationships were defined by traits such as morphology, behavior, and metabolic capacity. 48 

Cheap DNA sequencing has provided the ability to fortify those phenotype-based taxonomies with 49 

quantitative determinations of differences between marker genes, but canonical taxonomies such as the 50 

NCBI taxonomy continue to “reflect the current consensus in the systematic literature,” which ultimately 51 

derives from trait-based taxonomies (4). Recently, Parks et al. (5) formalized the genome taxonomy 52 

database (GTDB), a phylogeny in which taxonomic ranks are defined by “relative evolutionary 53 

divergence” in order to create taxonomic ranks that have uniform evolutionary meaning across the 54 

microbial tree of life (5). This approach removes phenotype or traits entirely from taxonomic assignment  55 

as evolutionary distance is calculated from the alignment of 120 and 122 concatenated, universal 56 

proteins found in all bacterial and archaeal lineages, respectively. An investigation of the relationship 57 

between traits and phylogeny has not been possible until the recent publication of a microbial tree of life 58 

that is based solely on evolutionary distance. Thus, we ask the question: to what extent does GTDB 59 

phylogeny predict microbial traits?  60 



Comparing phenotypic characteristics of microorganisms across the tree of life is not currently 61 

possible, because most organisms and lineages currently lack cultured representatives (6, 7). We 62 

therefore used the abundance of different clusters of orthologous groups (COGs) in microbial genomes, 63 

a proxy for phenotype which is available for all microorganisms for which genomes are available. 64 

Clusters of orthologous groups (COGs) are a classification scheme that defines protein domains based 65 

on groups of proteins sharing high sequence homology (8). More than ~5,700 COGs have been 66 

identified to date. COGs are placed into one of 25 metabolic functional categories (COG-FCs), which 67 

represents a generalized metabolic function (e.g., “Lipid Transport and Metabolism” or “Chromatin 68 

Structure and Dynamics”). Our analyses quantify the degree to which taxonomic rank (genus through 69 

domain) predicts the COG-FC content of genomes, and illustrate which lineages are relatively enriched 70 

or depleted in specific COG-FCs. These analyses constitute a step towards better understanding how 71 

evolutionary processes influence the distribution of metabolic traits across taxonomy as well as being 72 

able to probabilistically predict the metabolic or functional similarity of microbes given their taxonomic 73 

classification.  74 

Results 75 

The genomes analyzed in this work were compiled from a variety of different sources, including 76 

RefSeq v92, JGI IMG/M, and Genbank, in order to include genomes created using diverse sequencing 77 

and assembly techniques. The integration of RefSeq v92, JGI IMG/M, and Genbank databases resulted 78 

in a total of 119,852 genomes within the custom-curated database. Raw data, GTDB taxonomy, and 79 

associated accessions are provided in Dataset S1, which is explained in more detail in Supplement 3, 80 

available here: https://zenodo.org/record/336156h5 (DOI:10.5281/zenodo.3361565). Of these genomes, 81 

we included only those that satisfied a set of criteria designed to ensure that each genus contained 82 

enough genomes to allow statistically robust analysis (see Methods). This resulted in a set of 13,735 83 

https://www.dropbox.com/sh/rnm6ount2aqkmvn/AACGgZhdrA0fSYnD0mNtIpaxa?dl=0%5dhttps://zenodo.org/record/336156h5


lineages, representing 22 bacterial phyla and 4 archaeal phyla, of which 67% have been grown in culture 84 

(Table 1).  85 

Most predicted open reading frames for most lineages could be assigned to a COG-FC. Across 86 

all phyla, an average of 84.3% + 7.8% of open reading frames were assigned to a COG-FC (Fig S1). 87 

Genomes of the same phylum tended to group together in an initial principal component analysis (PCA) 88 

of raw COG-FC abundance (Fig. 1A). Since this analysis was based on absolute abundance of COG-FCs 89 

in genomes, rather than relative abundance, we hypothesized that the relationship between COG-FC 90 

abundance and phylum was largely a consequence of genome size, which is phylogenetically conserved   91 

(9). Consistent with this possibility, position on PC 1 correlated closely with genome size (R
2
=0.88; Fig 92 

1B). We therefore normalized each COG-FC abundance, for each genome, to a prediction of COG-FC 93 

abundance as a function of genome size derived from a generalized additive model (GAM; Fig S2; 94 

summary statistics in table S1). Each GAM model was statistically significant (p < 0.001), and all but 95 

five COG-FCs had deviance explained (analogous to adjusted R
2
) of more than 50%. We interpret 96 

analyses of these genome size-normalized datasets as reflecting the enrichment or depletion of COG-FC 97 

abundance, relative to that expected for a given genome size, and thus, are defined as COG-FC relative 98 

abundances. PCA of these COG-FC relative abundances showed that species-level lineages still tended 99 

to group by phylum, even though the inter-phyla gradients in genome size were no longer apparent (Fig 100 

1B, C). Note that attempts were made to normalize by genome size alone; however, these attempts failed 101 

to properly remove the influence of genome size. We hypothesize this was due to the nonlinear response 102 

in COG-FC abundances as a function of genome size.  103 

To quantify the degree to which taxonomic rank explains the distribution of COG-FC relative 104 

abundances among individual genomes, we performed a permutation multivariate ANOVA 105 

(PERMANOVA) using the following taxonomic ranks: domain, phylum, class, order, family, and genus, 106 



as well as culture-status (cultured versus uncultured lineage). The rank of species was excluded from the 107 

analysis as every lineage was unique, and thus, species would explain 100% of the data. Every rank 108 

significantly influenced the distribution of COG-FC relative abundance (p < 0.001), but the fraction of 109 

variance that each rank explained differed substantially: phylum explained the most variance (14.6%), 110 

followed by order (9.2%), genus (5.5%), family (4.8%), and class (4.1%). Domain explained only 3.1% 111 

of variance in COG-FC relative abundance, the least of any taxonomic rank. Culture-status was a 112 

significant correlate of COG-FC abundance (p < 0.001) but had virtually no explanatory power, with 113 

variance explained <0.001%. This observation is consistent with no particular COG-FC relative 114 

abundance being systematically higher or lower in uncultured microbes relative to cultured microbes.  115 

The variability in COG-FC relative abundance across different phyla was explored in addition to 116 

mean COG-FC composition for individual phyla (Fig 3). The distance in COG-FC content was 117 

measured for all lineages in respect to phylum COG-FC centroid (Fig 3A). The variation in calculated 118 

distances for all lineages within a respective phylum was compared across the entire phylum (Fig 3A). 119 

Among all phyla, the Crenarchaeota varied the most from the phylum centroid, indicating the most 120 

genomic variation in terms of COG-FC content, followed by Patescibacteria and Cyanobacterota. The 121 

least variable phyla were the Synergistota, Marinisomatota, and Fibrobacterorta, respectively (Fig 3A). 122 

We explored the possibility that variances in lineages from the phylum centroid was a function of the 123 

number of lineages in the phylum. In other words, did COG-FC content of some genomes simply seem 124 

less variable because they had been under-sampled? A plot of the average distance of lineages from their 125 

phylum’s centroid (i.e., center of mass of all genomes in trait-space), versus the number of lineages in 126 

the phylum, reveals that increased sampling causes an apparent increase in the variability of traits within 127 

a phylum. This increase in variability across the phylum begins to asymptote after sampling 128 

approximately 100 genomes (Fig 3B). We modeled the data using both a saturating model (Eq. 1) and a 129 



linear model to test this observation. The saturating model described the relationship substantially better 130 

than a linear regression, as determined by Akaike Information Criterion (AIC; ∆AIC = 10.5). Coefficient 131 

A of the saturating model, which represents the value of the asymptote, was estimated to be 0.75 +/- 0.15 132 

(p < 0.001). Coefficient B, which represents how quickly the function approaches the asymptote, was 133 

0.43 +/- 0.30 (p = 0.17). Coefficient C, an offset to handle the fact that all the log-transformed distances 134 

have negative values, was -1.63 +/- 0.14 (p < 0.001). This means that observing approximately 100 135 

lineages in a phylum is sufficient to assess the variance in trait-space representing half of all potential 136 

variance for that phylum (0.13). Note this is after accounting for the shift parameter, C. 137 

We sought a qualitative sense of how the distribution of COG-FC relative abundance related to 138 

phylogeny. To achieve this, we quantified the average COG-FC relative abundance for each COG-FC in 139 

each genus These values were then visualized on a genus-level phylogenetic tree (Fig 4) utilizing 140 

concatenated ribosomal protein sequences published by Parks et al. (5). Data underlying Fig. 4 are 141 

presented in Supplemental Data Set 2. Several notable features appear in COG-FC relative abundance at 142 

the phylum level. For example, among the four Archaeal phyla represented here, Thermoplasmatota 143 

appears unique, with high  COG-FC relative abundances in cell motility and depletion in every other 144 

category. In general, the COG-FC content of bacterial lineages appeared more variable than the archaeal 145 

lineages at all taxonomic resolutions. The clade consisting of Bacteroidota, Spirochaetota, and 146 

Verrucomicrobiota were notably depleted in the less-variable COG-FCs, including energy production 147 

and conversion, amino acid transport and metabolism, and carbohydrate transport and metabolism, 148 

among others. Another prominent feature is the near-ubiquitous elevation in COG-FC relative 149 

abundance of cell motility, secondary metabolites biosynthesis, transport, and catabolism, lipid transport 150 

and metabolism, and intracellular trafficking, secretion, and vesicular transport COGs in Proteobacteria. 151 

A notable dichotomy in the COG-FC relative abundance of RNA processing and modification within the 152 



Proteobacteria mirrors the division of the two largest clades within the proteobacteria. Overall, relative 153 

abundance data qualitatively appears consistent with phylogenetic relationships, albeit, occurring on 154 

different taxonomic levels.  155 

The relationship between individual COG-FC relative abundances and taxonomic ranks was 156 

appeared largely variable (Fig 4). For instance, most variation in RNA Processing and Modification 157 

occurred at higher taxonomic ranks such as phylum and class while Secondary Metabolites 158 

Biosynthesis, Transport, and Catabolism varied at lower ranks such as order. To quantify this 159 

relationship, we applied a variance components model to proportion the variance explained by different 160 

taxonomic ranks (Fig 5). Domain and culture-status was excluded from this analysis as variance 161 

explained becomes imprecise when a factor has less than 5 groups (10). Consistent with the 162 

PERMANOVA results (Fig 2), COG-FC relative abundances were best explained by the taxonomic 163 

rank, phylum. In contrast to the PERMANOVA, the taxonomic rank, class, appeared to have reasonable 164 

explanatory power for a select set of COG-FCs. In general, the overall explanatory power for taxonomic 165 

rank appears to decrease at lower taxonomic ranks. 166 

Lastly, to gain a sense of “notable” COG-FCs associated with different phyla, we calculated the 167 

mean COG-FC across all lineages in a given phyla and compared these values against the 85
th

 and 15
th

 168 

percentiles for all lineages in our custom-curated database. All COG-FCs which were significantly (p < 169 

0.05; based on a 10
5
-iteration bootstrap analysis) greater or less than the 85

th
 and 15

th
 percentiles, 170 

respectively, are shown in Table 2. Each archaeal phylum was enriched or depleted three-to-nine COG-171 

FCs, whereas most bacterial phyla were enriched or depleted in in three to four COG-FCs.  A few 172 

exceptions arose, such as Fibrobacterota was deplete in eight COG-FCs, Nitrospirota A was enriched in 173 

four and depleted in five, and Proteobacteria was the only phylum not heavily enriched or depleted in 174 

any COG-FCs. Relative abundance data, along with associated GTDB taxonomic assignments, used for 175 



generating Fig 4 is available in Dataset S2. 176 

Discussion 177 

We observed that the abundance of COG-FCs within individual lineages tentatively grouped 178 

according to phyla after variable reduction via PCA (data not shown). Furthermore, PCA scores along 179 

PC1 correlated strongly with genome size (R2=0.88; Fig 1A). The conserved nature of genome size 180 

across phylogeny (9) implied that phylogenic groupings may be an artifact of genome size. Thus, the 181 

normalization of COG-FC abundances by genome size to properly characterize the relationship between 182 

COG-FC and phylogeny. We performed the normalization using the slope from a GAM regression 183 

which modeled COG-FC abundance as a function of genome size. The COG-FC normalization removed 184 

the influence of genome size (R2=0; Fig 1B) while retaining phylogenic groupings (Fig 1C and Fig S3). 185 

The PERMANOVA (Fig 2) and analysis of diversity of genomic composition within phyla (Fig 186 

3) showed that microbial lineages exhibit characteristic relative abundances of COG-FC, and that the 187 

extent of variation varies among taxonomic ranks. Of all the taxonomic ranks, phylum was the most 188 

powerful predictor of COG-FC relative abundances, which is consistent with observations that phylum 189 

can be informative of microbial function (e.g., 11–13). Lower taxonomic ranks such as genus and family 190 

had approximately half the explanatory power of the taxonomic rank, phylum. Many studies focus on 191 

metabolic coherence of individual traits and regularly find traits conserved on the family level (2, 3, 14). 192 

The discrepancy between previous observations and our observation likely relates to how we 193 

characterize patterns in metabolic potential. These studies characterize trait function based on phenotype 194 

observation, protein structures, and pathway components. Such characterizations are effective metrics 195 

for characterizing finer units of taxonomy, such as genus, but do not scale to coarser units of taxonomy, 196 

such as phylum. In contrast, COG-FCs provide a coarse metabolic description which scales with coarser 197 

units of taxonomy (14). The tradeoff of the approach used here is that, by analyzing COG-FCs, we lose 198 



information about specific genes or potential metabolic functions but gain the ability to apply a 199 

consistent analysis across an entire genome and across the entire microbial tree of life. Thus, the extent 200 

that observed patterns (Fig 1) reflect phenotypically-expressed differences among lineages is unknown. 201 

Nonetheless, the statistical robustness of the relationship between all taxonomic ranks and COG-FC 202 

patterns suggests that evolutionary processes (e.g., horizontal gene transfer, vertical gene transfer, 203 

duplications, deletions, etc.) control the preponderance of different COG-FCs across lineages.  204 

The role that individual evolutionary processes play in influencing COG-FC relative abundances 205 

at a given taxonomic rank is likely variable. For instance, horizontal gene transfer is more common 206 

among more closely related lineages (16) and thus, likely promotes increased levels of similarity at 207 

lower taxonomic ranks. At higher taxonomic ranks, vertical processes may be more important. The 208 

asymptote in the mean log10-distance from the centroid as function of lineages in a phylum suggests that 209 

identifying more lineages for more poorly represented lineages should expand the diversity of COG-FCs 210 

that are found, whereas phyla that were adequately sampled (at least ~1000 lineages) exhibited 211 

comparable variability in COG-FC distributions (Fig 3B). Since many more than ~1000 distinct lineages 212 

of each phylum are likely to exist (17), we propose that the taxonomic rank of phylum implies a fairly 213 

consistent degree of diversity in COG-FC distribution. To the extent that phenotype matches genotype at 214 

the level of COG-FC distributions, therefore, we expect that typical phyla exhibit similar phenotypic 215 

diversity. A notable exception is the phylum Crenarchaeota, which were far more diverse than would be 216 

expected based on the number of lineages sampled. The Crenarchaeota, as defined in the GTDB, 217 

collapsed members of several phyla that had been designated separately under previous taxonomies, 218 

including lineages that had previously been assigned as Crenarchaeota, Thaumarchaeota, 219 

Euryarchaeota, Verstraetearchaeota, Korarchaeota, and Bathyarchaeota (5). It is possible that the 220 

relationship between marker genes used in the GTDB and the rest of the genome is unusual for this 221 



clade, compared to other phyla, or that the GTDB classification of Crenarchaeota is lacking in some 222 

other way.  223 

Although the ranks, genus and family, explained relatively little of the variance in COG-FC 224 

distribution, examples of consistent colored blocks were evident at every taxonomic resolution in Fig 4, 225 

indicating higher or lower relative abundances of specific COG-FCs were conserved across each 226 

taxonomic rank in some parts of the phylogenetic tree. This is explained by ‘distantly’ (i.e., non-sister 227 

clades) related clades occupying similar COG-FC trait-space. Our variance components model 228 

accounted for the hierarchical nature of taxonomic lineage by partitioning the explanatory power that 229 

individual taxonomic ranks had for individual COG-FC relative abundances (Fig 5). Consistent with Fig 230 

4, different COG-FCs appeared most controlled at different taxonomic ranks. For instance, the COG-FC, 231 

Coenzyme Transport and Metabolism, was almost entirely explained by the taxonomic rank, phylum. 232 

This observation is consistent with previous assessments suggesting that enzyme cofactors are deeply 233 

conserved at the phylum level (18, 19). Similarly, the COG-FC, Carbohydrate Transport and 234 

Metabolism, was best explained the taxonomic ranks, genus and family, which is consistent with 235 

previous observations that large amounts of variability exist for hydrolase traits at lower taxonomic 236 

ranks (1–3). Ultimately, the variability in explanatory power on COG-FCs by different taxonomic ranks  237 

supports the notion that evolutionary processes operate on microbial metabolisms at different timescales 238 

depending on which component of the metabolism is in question. 239 

The coherence in metabolic potential at higher taxonomic ranks may help explain the distribution 240 

of microbial clades across ecological niches. Analyses of habitat associations (1, 9, 20) found phylum-241 

level patterns in lineages occupying niches which supports the idea that there is a relationship between 242 

higher taxonomic ranks, metabolism, and niche. Our analysis provides quantitative evidence to this idea 243 

by demonstrating coherence in metabolic potential with broad-scale patterns in genomic data (Fig 1-5). 244 



The question remains: how well do the observed COG-FC relative abundances reflect expressed 245 

functional traits (i.e., phenotype) across these lineages? It is difficult to address this question 246 

systematically, but some of the relative abundances and depletions here appear consistent with known 247 

physiologies of clades. For instance, Rickettsiales were depleted in nucleotide metabolism and transport, 248 

consistent with previously observed lack of a metabolic pathway for purine synthesis among five 249 

example Rickettsiales (21). Another example is the depletion in the COG-FCs for energy production and 250 

conversion, amino acid transport and metabolism, and carbohydrate transport and metabolism within the 251 

Bacteroidetes, Spirochaetes, and Chlamydiales clade. This clade is known to contain many host-252 

dependent pathogens and symbionts (22–24), which are often depleted in these COG-FCs (25). 253 

The GTDB classification is the first fully algorithmic and quantitatively self-consistent microbial 254 

taxonomy that can be applied across the tree of life (5). By standardizing the meaning of taxonomic 255 

ranks, it creates an objective basis on which to compare microbial functionality to phylogeny. The 256 

analyses presented here demonstrate compositional patterns exist for genomic traits which can be 257 

explained by different taxonomic ranks. Furthermore, the proportion of variance explained for individual 258 

COG-FCs was partitioned as a function of taxonomic ranks. These quantitative relationships elude to the 259 

idea that evolutionary processes operate on different timescales for different components of microbial 260 

metabolisms and supports previous notions that a relationship exists between higher taxonomic ranks, 261 

metabolism, and ecological niches. 262 

 Materials and Methods 263 

GENOME DATABASE CURATION 264 

All bacterial and archaeal genomes from the RefSeq database v92 (26), uncultured bacterial and 265 

archaeal (UBA) metagenome-assembled genomes (MAGs) reported in Parks et al. (5, 27), bacterial and 266 

archaeal MAGs from Integrated Microbial Genomes and Microbiomes (IMG/M), and bacterial and 267 



archaeal single amplified genomes (SAGs) from IMG/M were curated into a single database. All 268 

genomic content within the curated database is referred to as “genome(s)” for simplicity. Genomes were 269 

assigned taxonomy consistent with the Genome Taxonomy Database (GTDB) using the GTDB toolkit 270 

(GTDB-Tk) v0.2.1 (5). The GTDB-Tk taxonomic assignments were consistent with reference package 271 

GTDB r86. Lineages which did not receive a genus classification, due to the absence of a reference 272 

lineage were excluded from analyses. In total, 6.1% of the total number of genomes from the initial 273 

database met this condition. Due to bias in the abundance of strains in specific clades (e.g., E. coli), the 274 

lowest taxonomic rank considered during our analysis was species. The COG-FC relative abundances 275 

(see below) were averaged together for all strains within a given species. An exception was made for 276 

lineages which shared a genus classification but lacked a species classification. In this scenario, each 277 

genome was treated as an independent lineage. In total, 10.9% of the total number genomes analyzed 278 

(i.e., had a genus assignment) met this condition. Lastly, only genomes belonging to genera with at least 279 

ten unique species in the database were retained. This criterion ensured enough data to generate 280 

meaningful statistics during our PERMANOVA. The final database is summarized in Table 1. The 281 

genus-level phylogenetic tree was generated from concatenated protein sequence alignments published 282 

in Parks et al. (5). 283 

COG FUNCTIONAL CATEGORY IDENTIFICATION, ENUMERATION, AND NORMALIZATION  284 

Genes were predicted from individual genomes and translated into protein sequences using 285 

Prodigal v.2.6.3 (28). The resulting protein sequences were analyzed for COGs (8). COG position-286 

specific scoring matrices (PSSMs) were downloaded from NCBI’s Conserved Domain Database (27 287 

March 2017 definitions). COG PSSMs were BLASTed against protein sequences with the Reverse 288 

Position Specific-BLAST (RPS-BLAST) algorithm (29). Following previously a reported protocol (29), 289 

we used an E-value cutoff of 0.01 to assign COGs with RPS-BLAST. The retrieved COGs were 290 

assigned to their respective COG functional categories (COG-FCs; 25 in total) and the abundance of 291 



each functional category was tabulated using cdd2cog (30) for each genome. The abundance for 292 

individual COG-FCs was normalized by the respective COG-FC standard deviation across all lineages. 293 

For the COG-FCs, extracellular structures and nuclear structures, the standard deviation was 0. 294 

Consequently, data could not be normalized, and thus, these two categories were discarded from all 295 

analyses.  296 

COG-FC abundances were normalized by their respective regression slopes of COG-FC 297 

abundance for a given genome as a function of genome size. COG-FC abundances were modelled as a 298 

function of genome size for individual categories using a generalized additive model (GAM) with a 299 

smoothing term due to the pairwise response to genome size (Sup. Figure 1). We used the gam function 300 

from the R package, mgcv (31). In some instances, regression fits were visibly skewed by high-leverage 301 

data points. High-leverage data were filtered using the influence.gam function in the mgcv package. 302 

Data in the 99.5% percentile for influence were excluded when performing regression analysis but were 303 

included in all downstream analyses. All regressions were significant with p<0.001. 304 

PRINCIPAL COMPONENT ANALYSIS (PCA) 305 

We performed PCA on the normalized COG-FC abundances and relative abundances. Prior to 306 

PCA, assumptions of normality were achieved by performing a boxcox transformation on individual 307 

COG-FC abundance and relative abundance distributions with the boxcox function from the R Package, 308 

MASS (32). The resulting distributions were then scaled by the respective COG-FC standard deviation 309 

calculated from all genomes. PCA was performed using the princomp function from the R package, stats 310 

(33).  311 

QUANTIFYING COG-FC VARIANCE EXPLAINED BY TAXONOMIC RANK  312 

We performed permutational multivariate analysis of variance (PERMANOVA) using the adonis 313 

function from the R package, vegan (34). The taxonomic ranks domain, phylum, class, order, family, 314 



and genus as well as cultured-status were used as test categorical variables for quantifying variance in 315 

COG-FC relative abundance explained by the mean taxonomic rank centroids. The default, 999 316 

permutations test, was performed using each categorical variable. Distances were calculated between 317 

mean phyla COG-FC relative abundance centroids and the respective genomes within that phyla by 318 

performing an analysis of multivariate homogeneity of groups dispersions with the betadisper function 319 

from the R package, vegan (34). The centroid type input was set as “centroid” (mean). The distance 320 

matrix used for both the adonis and betadisper analyses was generated calculating Euclidean distance on 321 

the normalized COG-FC relative abundance.  322 

The mean log10-distance from phylum centroid for each phylum and modeled with the following  323 

equation, which represents a hyperbola shifted on the x-axis to ensure that mean distance is zero when n 324 

= 1: 325 

𝑙𝑜𝑔10(𝑀𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) =
𝐴(𝑙𝑜𝑔10(𝑛)−1)

𝐵+𝑙𝑜𝑔10(𝑛)−1
+ 𝐶      (1 326 

where A, B, and C are fit coefficients and n is the total number of lineages in the given phylum. The 327 

Akaike Information Criterion was calculated with the fit from eq 1 using the AIC function from the R 328 

package, stats (33). 329 

 A variance component model was performed using the lme function from the R package, nlme 330 

(35). The proportion of variance explained by the taxonomic ranks, phylum, class, order, family, and 331 

genus, was determined for each individual COG-FC. Domain and culture-status were not evaluated due 332 

to imprecise results generated from factors that only have 2 groups (10). Lineage was treated as a 333 

random intercept, where individual taxonomic ranks were nested within one another in a hierarchical 334 

manner (R notation: ~1|phylum/class/order/family/genus). Confidence intervals were determined by 335 

performing a 500 iteration bootstrap analysis with the variance component model. During the bootstrap 336 



analysis, genomes were randomly sampled with replacement. 337 

DATA AVAILABILITY 338 

The genomes analyzed for the current study are available in NCBI’s RefSeq database 339 

(ftp://ftp.ncbi.nlm.nih.gov/refseq/release/). UBA MAGs used for the current study are available under 340 

NCBI’s BioProject PRJNA417962 and PRJNA348753. Publically available JGI IMG/M genomes can 341 

be downloaded from the genome portal (https://img.jgi.doe.gov/) while private genomes were acquired 342 

from Chad Burdyshaw. Associated genome accessions for genomes in the described datasets are 343 

available in Dataset S1 which is available at: https://zenodo.org/record/336156h5 344 

(DOI:10.5281/zenodo.3361565). 345 
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Tables 436 

Table 1. A summary of the custom-curated genome database used in this work. 437 

Unique 

Domains 

Unique 

Phyla 

Unique 

Classes 

Unique 

Orders 

Unique 

Families 

Unique 

Genera 

Unique 

Lineages 

Cultured 

Lineages 

Uncultured 

Lineages 

Bacteria 

Actinobacteriota 3 9 22 50 2286 2115 171 

Bacteroidota 3 7 19 50 1606 741 865 

Campylobacterota 1 1 6 8 270 203 67 

Cyanobacteriota 2 3 4 7 119 84 35 

Deinococcota 1 1 2 2 44 44 0 

Desulfobacterota 2 2 2 4 43 23 20 

Elusimicrobiota 1 1 1 1 22 0 22 

Fibrobacterota 1 1 1 1 34 22 12 

Firmicutes 3 10 23 48 1543 1356 187 

Firmicutes A 2 7 10 31 600 304 296 

Firmicutes B 1 1 1 1 22 11 11 

Firmicutes C 1 2 3 4 53 32 21 

Fusobacteriota 1 1 2 2 40 40 0 

Marinisomatota 1 1 1 1 10 0 10 

Nitrospirota 2 2 2 2 30 6 24 

Nitrospirota A 1 1 1 1 14 2 12 

Patescibacteria 6 16 26 36 707 0 707 

Proteobacteria 3 25 59 163 5589 3952 1637 

Spirochaetota 3 4 4 6 153 89 64 

Synergistota 1 1 1 1 19 2 17 

Thermotogota 1 1 2 2 23 15 8 

Verrucomicrobiota 2 4 5 7 84 16 68 

Archaea 

Crenarchaeota 1 1 1 2 68 7 61 

Euryarchaeota 2 2 2 2 45 26 19 

Halobacterota 4 5 7 9 164 97 67 

Thermoplasmatota 1 1 2 9 147 0 147 

Total 26 50 110 209 450 13,735 9187 4548 
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Table 2. Phylum highly enriched (>85
th

 percentile) or depleted (<15
th

 percentile) in COG-FCs and 439 

depletion. All reported categories are statistically significant. 440 

Phylum Enriched COG-FC Depleted COG-FC 
 

COG-FC 
Table 

Key 

Actinobacteriota -- 4,6  Cytoskeleton 1 

Bacteroidota -- 11,18,22  RNA Processing and 

Modification 
2 

Campylobacterota 4,6,10,15,19 8,12  Chromatin Structure and 

Dynamics 
3 

Cyanobacteriota 19 12  Cell Motility 4 

Deinococcota -- 15 
 Secondary Metabolites 

Biosynthesis, Transport, and 

Catabolism 
5 

Desulfobacterota 13 7 
 Intracellular Trafficking, 

Secretion, and Vesicular 

Transport 
6 

Elusimicrobiota 3,10,15 14,16  Lipid Transport and Metabolism 7 

Fibrobacterota -- 7,11,12,13,16,18,20,22  Carbohydrate Transport and 

Metabolism 
8 

Firmicutes 9,12,21 --  Defense Mechanism 9 

Firmicutes A 9 5,7,16,20  Signal Transduction Mechanisms 10 

Firmicutes B 13,17,19 --  Amino Acid Transport and 

Metabolism 
11 

Firmicutes C 19 --  Transcription 12 

Fusobacteriota -- 10,21  Energy Production and 

Conversion 
13 

Marinisomatota -- 12,14  Replication, Recombination, and 

Repair 
14 

Nitrospirota 6,10,17 8  Cell Wall/Membrane/Envelope 

Biogenesis 
15 

Nitrospirota A 4,6,10,15 12,17,22,23  Inorganic Ion Transport and 

Metabolism 
16 

Patescibacteria -- 7,11,16,19  Cell Cycle Control, Cell Division, 

and Chromosome Partitioning 
17 

Proteobacteria -- --  Function Unknown 18 

Spirochaetota 4 5,16,19  Coenzyme Transport and 

Metabolism 
19 

Synergistota 3,4,11,16 --  Post-translational Modification, 

Protein Turnover, and Chaperone 
20 

Thermotogota 3,4,8,10 --  Nucleotide Transport and 

Metabolism 
21 

Verrucomicrobiota 1 10,12,14,21, 23  General Function Prediction Only 22 

Crenarchaeota 3,13,11,19,7,12,16,5,22 9,10,14,15,17  Translation Ribosomal Structure 

and Biogenesis 
23 

Euryarchaeota 2,3,13,18,22 5,7,10,14,15    

Halobacterota 3,19,22 15,16    

Thermoplasmatota 1,2,7,13 4,6,8,9,10,14, 15,16    



Figure Legends 441 

Fig 1. PCA plots of COG-FC abundance (A), relative abundance (B, C). Individual data points 442 

are colored by genome size in panels A and B. Panel A was not normalized by genome size while panels 443 

B and C were normalized by genome size. Black contours on panels B and C correspond to density plots 444 

for all genomes in panel B. Colored contours in panel C correspond to the respective lineage label. For 445 

panel A, PC1 explained 71% and PC2 explained 7.0% of variance. For panels B and C, PC1 explained 446 

21% and PC2 explained 16% of variance. Panel C only corresponds to the top 10 most abundant phyla 447 

analyzed in Table 1 while the remaining contours are shown in Fig S3.    448 

  449 



Fig 2. The average variance in COG-FC relative abundance explained by different taxonomic ranks 450 

(bars) and the cumulative variance explained by taxonomic ranks (line). All variance explained by 451 

taxonomic ranks was significant (p<0.001). The F-value for domain, phylum, class, order, family, and 452 

genus, was 726.0, 128.8, 38.76, 34.4, 11.2, and 5.1, respectively.   453 



Fig 3. Violin plots showing the distribution in distance (log10-transformed) for lineages from their 454 

respective phylum centroid (A) and the average of distance (log10-transformed) that individual lineages 455 

were from their respective phylum centroid (B). Coefficients in panel B correspond to fit parameters 456 

from eq 1. Error bars in panel B correspond to one standard deviation. The * symbols denote 457 

significance as defined in the text. We note three outliers: the Crenarchaeota are characterized by 458 

unusually high diversity of COG-FCs distributions, and the Synergistota and Fibrobacterota are 459 

characterized by an unusually low diversity of COG-FC distributions.   460 



Fig 4. A heat map showing the average COG-FC relative abundance for all archaeal (top) and bacterial 461 

(bottom) genera. Categories were arranged from left to right along the x axis in order of decreasing total 462 

variance in relative abundance across all lineages. Clades were organized along the y axis using 463 

phylogenetic relatedness based on the reported concatenated protein sequence alignments in Parks et al. 464 

(1).   465 



Fig 5. Results from a variance component model. Lineage was used as a nested random effect (intercept) 466 

for all COG-FCs. The proportion of variance explained is partitioned by phylum (A), class (B), order 467 

(C), family (D), and genus (E). Boxplots correspond to the variability in variance explained from the 468 

bootstrap analysis, red dashed lines correspond to 95% confidence intervals calculated from the 469 

bootstrap analysis, and red circles correspond to variance explained when considering all data in Table 470 

1. Note that the titles for COG-FCs are shortened and full category names are shown in Fig 4 and Table 471 

2. 472 
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Supplementary Material Legends 474 

Fig S1. Violin plots showing the distribution for the ratio of total COG-FC annotations in a genome to 475 

the total number of open reading frames for each phyla.  476 



Fig S2. GAM regressions modeling COG-FC normalized abundance (standardized) as a function of 477 

genome size. Solid red lines correspond to mean fit. Upper and lower red dashed lines correspond to 95
th

 478 

percentile confidence intervals.  479 



Fig S3. Contour plots similar to those in Fig 1C. Lineages shown are for those in Table 1 not shown in 480 

Fig 1C.  481 



Dataset S1. Individual rows correspond to individual genomes (excluding the top row which are column 482 

headers). Columns 1 through 25 correspond to raw abundances for each COG functional category. 483 

Column 26 corresponds to the total number of COGs in a genome. Columns 27, 28, 29, 30, 31, 32, and 484 

33, correspond to the GTDB domain, phylum, class, order, family, genus, and species classification, 485 

respectively. Column 34 corresponds to the culture-status. Column 35 is the genomes size in base pairs. 486 

Column 36 corresponds to the accession number for each genome. Accessions starting with GCF and 487 

GCA are from Refseq and Genbank, respectively. Accessions that are numbers only correspond to 488 

IMG/G. Column 37 corresponds to the total number of open reading frames in the genome.  489 



Dataset S2. Individual rows correspond to individual genus-level lineages (excluding the top row which 490 

are column headers). Columns 1, 2, 3, 4, and 5 correspond to domain, phylum, order, family, and genus, 491 

respectively. Columns 6 through 28 correspond to average enrichments for the respective lineage and 492 

COG functional category.  493 



Table S1. Fit statistics for GAM regressions modeling COG-FC abundance as a function of 494 

genome size.  495 



Figures 496 


