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ABSTRACT To describe a microbe’s physiology, including its metabolism, environ-
mental roles, and growth characteristics, it must be grown in a laboratory culture.
Unfortunately, many phylogenetically novel groups have never been cultured, so
their physiologies have only been inferred from genomics and environmental char-
acteristics. Although the diversity, or number of different taxonomic groups, of un-
cultured clades has been studied well, their global abundances, or numbers of cells
in any given environment, have not been assessed. We quantified the degree of
similarity of 16S rRNA gene sequences from diverse environments in publicly avail-
able metagenome and metatranscriptome databases, which we show have far less
of the culture bias present in primer-amplified 16S rRNA gene surveys, to those of
their nearest cultured relatives. Whether normalized to scaffold read depths or not,
the highest abundances of metagenomic 16S rRNA gene sequences belong to phy-
logenetically novel uncultured groups in seawater, freshwater, terrestrial subsurface,
soil, hypersaline environments, marine sediment, hot springs, hydrothermal vents,
nonhuman hosts, snow, and bioreactors (22% to 87% uncultured genera to classes
and 0% to 64% uncultured phyla). The exceptions were human and human-
associated environments, which were dominated by cultured genera (45% to 97%).
We estimate that uncultured genera and phyla could comprise 7.3 X 102° (81%) and
2.2 X 10%° (25%) of microbial cells, respectively. Uncultured phyla were overrepre-
sented in metatranscriptomes relative to metagenomes (46% to 84% of sequences
in a given environment), suggesting that they are viable. Therefore, uncultured mi-
crobes, often from deeply phylogenetically divergent groups, dominate nonhuman
environments on Earth, and their undiscovered physiologies may matter for Earth
systems.

IMPORTANCE In the past few decades, it has become apparent that most of the mi-
crobial diversity on Earth has never been characterized in laboratory cultures. We
show that these unknown microbes, sometimes called “microbial dark matter,” are
numerically dominant in all major environments on Earth, with the exception of the
human body, where most of the microbes have been cultured. We also estimate
that about one-quarter of the population of microbial cells on Earth belong to phyla
with no cultured relatives, suggesting that these never-before-studied organisms
may be important for ecosystem functions.

KEYWORDS environmental microbiology, phylogeny, uncultured microbes

irect sequencing of environmental DNA has shown that most microbial lineages
have not been isolated in pure culture (1-3). However, the cellular abundances
and viability states of uncultured microbes at different levels of phylogenetic diver-
gence from their closest cultured relative are unknown. Because greater phylogenetic
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distance correlates with higher levels of evolutionary changes, uncultured groups may
have novel undiscovered functions. Cellular abundance and viability may, in some
cases, signify importance with respect to current ecosystem functions, in contrast to the
members of the “rare biosphere” that become important for ecosystem functioning
when conditions change (4). With the exception of keystone species, which can have
great ecosystem importance even at low biomass concentrations, prokaryotic abun-
dance and viability are generally indicators for participation in current ecosystem
functions (1).

Quantifying the cellular abundance of all microbial taxa in any sample is challenging.
Fluorescent in situ hybridization (FISH) allows fluorescent tagging of a taxonomic
group, whose cells can then be counted under a microscope (2). However, FISH requires
developing probes for phylogenetic groups one by one, which is impractical for
quantifying highly diverse natural samples that are often comprised of thousands of
species (3). Furthermore, FISH techniques are not always quantitative in all environ-
ments, due to taxon-specific biases in probe efficacy (4, 5). Quantitative PCR has the
same low-throughput limitations, because individual measurements must be made for
each taxon, and primer bias makes them not absolutely quantitative (4). However,
understanding the total cellular abundance of uncultured clades of archaea and
bacteria in all environments on Earth is important to the field of microbiology, so we
approximated it using the data available in public databases.

Genes encoding the 16S rRNA small subunit of the ribosome are the most com-
monly used taxonomic and phylogenetic identifiers for bacteria and archaea, and most
scientific journals make publication contingent on the deposition of 16S rRNA gene
sequences into public databases. Therefore, the National Center for Biotechnology
Information (www.ncbi.nIm.nih.gov) houses a nearly complete database of full-length
16S rRNA gene sequences. This database is subject to biases because the gene entries
have undergone exponential amplification from their initial abundances, and small
mismatches between DNA primers and different taxa are magnified during this ampli-
fication (5). Nevertheless, we examined this database here because it incorporates
microbial phylogenetic information from thousands of different research studies. As-
sembled metagenomes provide a less biased accounting of 16S rRNA genes from a
given environment. For such analyses, all DNA is chemically extracted from a sample,
purified, sequenced in a small-read high-throughput platform, and then bioinformati-
cally assembled into contigs. Full-length 16S rRNA genes can be identified in these
contigs using hidden Markov model-based programs such as RNAmmer (6). If the
sequencing depth is great enough, quantifying read recruitment to each 16S rRNA
gene provides the best relative quantification of individual 16S rRNA genes currently
available.

Cellular activity, however, is as important to environmental functions as cellular
abundance (1). In cultured cells, rRNA content correlates with cellular activity (7),
although no universally predictive relationship between those two parameters has
been identified (8). Metatranscriptomes, in which 16S rRNA transcripts are converted
to cDNA and sequenced without the use of primers, provide an estimate of which
cells contained ribosomes and were therefore at least poised for activity in the
environment (8).

We determined the identity of nearly all 16S rRNA gene sequences from public
databases, to get a first estimate of the global abundance of microbial clades at
different levels of similarity to their nearest cultured relative in different environments.
The metagenomic and metatranscriptomic data sets show that uncultured clades
dominate the cellular abundance of nonhuman Earth environments. Knowing the
global abundance of cells from uncultured taxa is crucial for estimating the importance
of uncultured lineages to ecosystem functions, determining the appropriateness of
using cultured microbes as model systems for natural environments, and predicting the
causes of unculturability.
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Quantifying the Abundance of Uncultured Microbes
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FIG 1 Fractions of 16S rRNA genes from bacteria (top panel) and archaea (bottom panel) in public
databases from primer-amplified metagenomes (with and without read depths) and metatranscriptomes
at different percent identities with their closest cultured relative. Vertical dashed lines represent
estimated cutoff levels for different taxonomic levels of novelty relative to all cultures (indicated at the
top of the panel) (9). Primer-amplified bacterial sequences showed 30% to up to 100% similarity to their
closest cultured relative but were removed for clarity.

RESULTS AND DISCUSSION

More than a third of primer-amplified 16S rRNA gene sequences were from the same
species or genus as a culture (37% for bacteria and 34% for archaea; Fig. 1), in
agreement with previous findings indicating that primer-amplified databases skew
toward cultured organisms (9-11). However, even in the primer-amplified data set, the
majority of sequences were from uncultured genera or higher taxonomic groups,
including 17% and 44% from uncultured phyla in bacteria and archaea, respectively.
This suggests that, considering all full-length 16S rRNA genes in public databases as a
group, uncultured microbes, including those that are very highly divergent, are fairly
abundant. Metagenomes had lower fractions of 16S rRNA gene sequences from cul-
tured species (Fig. 1), with 15% for both bacteria and archaea based on total sequences
and 28% for bacteria and 31% for archaea based on scaffold read depths. The rest of
the 16S rRNA gene sequences were from uncultured genera and higher taxonomic
groups, with about one-third of total sequences from uncultured phyla (36% and 46%
without read depths and 24% and 33% with read depths for bacteria and archaea).

We recognize that it is impossible to absolutely link 16S rRNA gene identity to
taxonomic level, because phylogenetic difference is inconsistently related to 16S rRNA
gene sequence difference across lineages (12). These sequence similarity cutoff levels
are proxies for degrees of phylogenic novelty rather than rigidly defined taxonomic
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FIG 2 Proportion of 16S rRNA gene sequences in each category of phylogenetic novelty relative to
cultures for each environment, by amplicons, metagenomes (without scaffold read depth), and meta-
transcriptomes. Closed circles represent primer-amplified amplicons, open circles represent meta-
genomes, and crosses represent transcriptomes. Total numbers of sequences and studies are listed in
Table S2.

levels. By using published values for similarity bins (12), our findings are comparable to
those of other studies. Therefore, 16S rRNA gene sequences from uncultured cells were
more abundant than those from cultured cells, suggesting that uncultured microbial
clades are not relegated solely to the rare biosphere (13) but are instead numerically
dominant.

We found that highly divergent uncultured sequences were better represented in
metatranscriptomes than in metagenomes, with only 4% (bacteria) and 5% (archaea) of
total sequences from cultured species to genera and 65% (bacteria) and 71% (archaea)
of total sequences from uncultured phyla. Therefore, cells from highly divergent
uncultured groups were alive in situ. However, the greater abundance of uncultured
clades in metatranscriptomes than in metagenomes signifies a greater per-cell number
of ribosomes, because all of the data at the Joint Genome Institute (JGI) undergo rRNA
depletion, which uses primers to retrieve well-known ribosomal sequences. The se-
quences are proprietary, but they are almost certainly based on cultured organisms,
which would bias the remaining sequences to include a higher proportion of uncul-
tured clades. However, a comparison between metagenomes and metatranscriptomes,
both of which were derived from the same samples in the Gulf of Mexico, showed that
uncultured clades were indeed active relative to cultured clades (14).

Contributions from uncultured clades varied by environment (Fig. 2). The only
environments dominated by sequences from cultured species and genera were the
human body and human-adjacent environments (Fig. 2). This result was not due to
primer bias, because primer-amplified and metagenomic data sets contained mostly
cultured species and genera (45% to 97%, inclusive of bacteria and archaea). High
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FIG 3 Proportion of 16S rRNA gene sequences by scaffold read depth averaged across all metagenomes. Each single data point represents the abundance of

reads in that similarity bin from a single metagenome. Rows represent different similarity bins.

culturability in human environments likely benefits from a high frequency of culturing
efforts, because all culturing happens in the vicinity of humans, and the study of human
diseases has driven much research (15). Uncultured clades were also present in humans
and human-adjacent environments, but very few were uncultured at taxonomic cutoff
levels above the family level.

Primer bias toward cultures was more severe in all other environments, where
uncultured archaea and bacteria were much more abundant in metagenomic data sets
than in primer-amplified data sets (Fig. 2). Archaea in marine sediments represented an
exception, possibly indicating that commonly used primers have good matches to the
uncultured phyla that are abundant in these environments (16). To avoid primer bias
and account for a high environmental abundance of closely related sequences, we used
the metagenomic data sets with read depths to estimate quantifications (Fig. 3).
Hypersaline environments were the next-best-cultured environments after human
environments, with nearly half of archaea and bacteria being from cultured genera and
very few from uncultured phyla (Fig. 3). The next-best-cultured group consisted of
archaea in bioreactors. All other environments had more sequences from uncultured
phyla than from cultured genera. Hot springs and hydrothermal vents, in particular, had
high frequencies of uncultured phyla identified as both bacteria and archaea. Even
though human host environments were dominated by cultured groups, nonhuman
hosts had as few sequences from cultured archaea and bacteria as soil, seawater,
freshwater, marine sediment, terrestrial subsurface, snow, and bioreactors did (for
bacteria). This suggests that highly divergent uncultured microbes, possibly with novel
functions, dominate nonhuman environments on Earth.

By using a large collection of publicly available sequences that represent as com-
plete a sampling as possible, our sequence abundance quantifications can be extrap-
olated to global cell estimates, although this approach is biased against cells that are
less amenable to DNA extraction and undersampled environments. Copy numbers of
16S rRNA genes per cell can be determined only for completed genomes (means of 3.8
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TABLE 1 Metagenome-based estimates of global microbial cell abundances from
uncultured archaea and bacteria, based on 165 rRNA gene sequence read depths?

No. (%) of microbial cells x 1026¢

Cultured Uncultured Uncultured

Environment species to genera to phyla and
(reference) Total genera classes higher
Marine sediment (48) 2,900 390 (13) 1,921 (66) 590 (20)
Soil (49) 2,560 454 (18) 1,268 (50) 839 (33)
Terrestrial subsurface (49) 2,500 702 (28) 1,211 (48) 587 (23)
Seawater (49) 1,010 143 (14) 640 (63) 229 (23)
Freshwater (49) 1.3 0.1 (11) 0.8 (64) 0.3 (25)
Plant hosts (50) 1 0.5 (49) 0.4 (37) 0.1 (14)
Animal hosts (51) 0.2 0.1 (49) 0.1 (37) 0.0 (14)
Total 8,974 1,689 (19) 5,050 (56) 2,245 (25)

aEnvironments with fewer microbial cells were excluded.
bCutoff values represent the upper 95% confidence interval of the median 16S rRNA gene identity for each
taxonomic level (12).

copies/genome for 1,657 bacterial genomes and 1.8 copies/genome for 79 archaeal
genomes on the IMG database (https://img.jgi.doe.gov/mer/; accessed 30 March 2018).
However, only a few closed genomes are currently available for uncultured organisms
(17). Applying the 16S rRNA gene copy numbers for completed genomes to our
estimations of total cells would increase our estimates of the abundance of uncultured
organisms, because estimations of archaea, which we found to be less well cultured,
would be divided by the smaller number. Therefore, we use the conservative simplifi-
cation of a single 165 rRNA gene copy number per genome to estimate that 81%
(7.3 X 10?° cells) of microbial cells on Earth are from uncultured genera or higher and
25% (2.2 X 1022 cells) are from uncultured phyla (Table 1). Deriving abundance data
from metatranscriptomes, the number of uncultured cells increased to 98%
(5.9 X 102°), with uncultured phyla contributing 69% (4.2 X 102°) (Table 2). If the
terrestrial subsurface data sets lack contributions from the ultrasmall uncultured cells
missed in standard filtering methods (18), or if DNA extraction favors cultured taxa,
which may have more easily lysed cell membranes, then these values represent
underestimates of the abundance of uncultured cells on Earth.

We tested whether only a few clades account for this global dominance of uncul-
tured microbes. On the contrary, the metagenome data show that each category of
phylogenetic novelty contained many different genera (Fig. 4). Also, genera at all levels
of phylogenetic novelty were distributed throughout the rank abundance curves in all

TABLE 2 Metatranscriptome-based estimates of global microbial cell abundances from
uncultured archaea and bacteria, based on 16S rRNA gene sequence numbers?

No. (%) of microbial cells X 1026¢

Cultured Uncultured Uncultured

species to genera to phyla and
Environment (reference) Total genera classes higher
Marine sediment (48) NA NA NA NA
Soil (49) 2,560 49 (2) 758 (30) 1,753 (69)
Terrestrial subsurface (49) 2,500 45 (2) 597 (24) 1,858 (74)
Seawater (49) 1,010 36 (4) 389 (38) 587 (58)
Freshwater (49) 1.3 0.0 (3) 0.5 (40) 0.7 (56)
Plant hosts (50) 1 0.2 (18) 0.3 (33) 0.5 (49)
Animal hosts (51) 0.2 0.0 (18) 0.1 (33) 0.1 (49)
Total 6,074 129 (2) 1,744 (29) 4,200 (69)

aEnvironments with fewer microbial cells were excluded.

bCutoff values represent the upper 95% confidence interval of the median 16S rRNA gene identity for each
taxonomic level (12). NA, not applicable (too few metatranscriptome data are available from the indicated
environment to be included).
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FIG 4 Rank abundance plots by taxonomic genus assignments for metagenomic data (top three rows) and metatranscriptomic data (bottom two rows).
Listed in each box are the top 10 most abundant genera for that environment in the format of phylum_lowest identified taxonomic group, with asterisks
(*) denoting archaea. Data are colored for uncultured phyla (teal), uncultured class to genus (pink) or cultured phyla (tan). Taxonomic-based genera that
had sequences from multiple phylogeny-based percent identity bins were labeled with the color of the bin with the most sequences.

environments except for the human environment (Fig. 4). The taxonomic identities of
the 10 most abundant genera differed between environments and often included
genera from newly named uncultured phyla such as Parcubacteria, Omnitrophica,
Latescibacteria, Patescibacteria, Bathyarchaeota, Woesearchaeota, Armatimonadetes,
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ACT, Miscellaneous Euryarchaeotal Group, Saccharibacteria, WS6, Marinimicrobia, and
FBP (Fig.4). Despite having fewer overall sequences than bacteria, archaea were in the
10 most abundant genera in 8 of the 12 environments. Few of the top 10 genera in
metagenomes were also in the top 10 genera in metatranscriptomes. The exception
was Chloroflexi_Anaerolineaceae, which was present in the top 10 genera in both data
sets for hot springs, terrestrial subsurface, and bioreactors. However, this could be an
artifact of the analysis, because uncultured members of this group have not been
taxonomically characterized to the genus level, so these bins may lump together many
different genera that are collectively labeled “uncultured.” Some of the most abundant
uncultured clades, such as “Candidatus Pelagibacter” in seawater, have actually been
obtained in pure cultures (19), but their physiological requirements prevent them from
meeting the stringent criteria required to receive an official taxonomy, such as the
ability to be grown out of cell stocks. However, few other examples of such cryptically
cultured organisms occurred in our data set.

Many of the top 10 genera were taxonomically identified as belonging to cultured
phyla, even though we found them to be <86% similar to their nearest cultured
neighbor. This is because taxonomic identification and phylogenetic identification are
not identical methods. Sequences that have low similarity to culture sequences can
nonetheless be given a taxonomic classification to a cultured phylum because the
database used for classification also contains many instances of uncultured sequences
that have previously been named part of that phylum. When genomes become
available, such groups are often reassigned as phyla (1). Our results suggest that rare
and abundant taxa are both cultured and uncultured, as well as bacterial and archaeal.

Our data sets likely include some amount of relic preserved DNA that can inflate
diversity estimates (20). However, we do not calculate total diversity in a single sample
but instead calculate occurrence frequency across many samples. Extracellular DNA
from a particular taxonomic group is not likely to be abundant in the majority of
samples to the exclusion of intracellular DNA from that taxonomic group. In addition,
in all environments, metatranscriptomes were characterized by higher fractions of
sequences from uncultured groups than the metagenomic databases were, with par-
ticularly high levels of contributions from uncultured phyla (Fig. 2). This suggests that
the uncultured cells that dominate these data sets likely come from living organisms.

These results offer at least a partial explanation for “the great plate count anomaly,”
which states that <1% of environmental microbial cells are culturable with standard
methods (21). To update this analysis, we examined 347 experiments in 26 studies of
samples from lakes, rivers, drinking water, seawater, marine and terrestrial subsurfaces,
animal hosts, and soils and found a median of 0.5% culturable cells (see Table S3 in the
supplemental material). The past several decades have seen considerable progress on
novel culturing techniques, which have yielded higher fractions of culturable cells
(25% = 20%, n = 38) in fish guts (22), rice paddies (23), surface marine sediments (24,
25), agricultural soils (26), and eutrophic lakes (21). However, these studies expanded
the set of cultured taxa only to novel families (24, 26), and we show that the
percentages of cells from cultured families in these environments match the percent-
ages of culturable cells reported from these studies (Table S4). Therefore, we propose
that these innovative methods likely were successful at culturing viable but noncul-
turable cells (VBNC), which are cells from previously cultured clades that are temporarily
and reversibly culture resistant (27). However, our analysis shows that a considerable
fraction of cells in nonhuman environments are phylogenetically divergent, even
belonging to novel phyla. We propose that representatives of these phyla resist
cultivation due to more-fundamental reasons, making them phylogenetically divergent
noncultured cells (PDNC). We roughly define PDNC as cells from the order level or
higher with no cultured representatives. Unlike VBNC, PDNC are not dormant close
relatives of cultured species that can be expected to behave like known cultures under
the correct combination of growth conditions. These entire lineages may have physi-
ologies that prevent growth in pure culture, such as dependences on syntrophic
interactions (28), precise chemical or physical parameters that are difficult to maintain
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(24), extreme dependence on oligotrophy (19, 29, 30), or very low growth rates (31).
Examples of taxa from novel phyla brought into pure culture are Nitrosopumilus sp., a
member of the Thaumarchaeota phylum (29), and Abditibacterium utsteinense, a mem-
ber of the FBP phylum (32). These required extremely low-nutrient environments and
incubation times of many months to be brought into culture. Interestingly, A. ut-
steinense tolerates a wide range of antibiotics (32), so adding antibiotics to culture
media may aid in the isolation of further uncultured groups. Fundamentally novel
culturing techniques, possibly guided by cell physiology insights derived from genomic
studies, are likely required to grow more of these highly abundant and deeply diver-
gent clades in culture.

Given the substantial functional differences that often exist between closely related
microbial species or strains, these uncultured lineages are likely to contain many novel
metabolic pathways, enzyme functions, cellular structures, and physiologies (33). For
instance, uncultured clades of archaea and bacteria have more genes and physiologies
that are unannotatable with current databases than cultured clades (27% and 37%
versus 19% and 31%, respectively; Fig. S1). In addition, rapidly growing numbers of
studies are uncovering potentially important functions of uncultured clades within
specific environmental contexts (14, 34-36).

We conclude that uncultured taxa are abundant and alive in Earth’s microbiome,
often at very high levels of phylogenetic novelty, and may harbor undiscovered
functions that are important on the ecosystem level. The high proportion of sequences
from uncultured groups in human-maintained bioreactors, animal and plant hosts, and
soils, many of which were agricultural or municipal, shows that highly divergent novel
clades not only are a feature of pristine wilderness environments but are important in
engineered environments with immediate human applications as well. This suggests
that results of ex situ experiments performed with existing microbial cultures may not
represent the functions of the majority of cells in situ. For environmentally important
VBNC, novel culture techniques are showing great success in getting them into culture
(30, 37). For PDNC, novel culture-independent techniques such as genomic inference
(38), label incorporation (39-41), and tracking of slow growth in a mixed population
under different conditions (42) will allow the study of their physiology and ecology and
guide efforts to culture them.

MATERIALS AND METHODS

Primer-amplified sequences were obtained from Silva123Ref (www.arb-silva.de) (5), which contains
chimera-checked, high-quality, >900-bp (for archaea) and >1,200-bp (for bacteria) 16S rRNA gene
sequences, almost all of which represent Sanger-sequenced clone insertions from primer-amplified PCR
products. The analysis yielded 952,509 bacterial and 51,608 archaeal sequences from 4,743 studies that
employed a wide variety of primers. Genes that were annotated as 16S rRNA genes and were >900 bp
in length were collected from the Joint Genome Institute (JGI) IMG/M database for metagenomes larger
than 1 GB in total or metatranscriptomes larger than 60 Mb in total (6). These metagenomes have not
undergone multiple-displacement amplification. Too few metatranscriptomes were available from hu-
mans, human-adjacent environments, rock, snow, hydrothermal vents, hypersaline environments, or
marine sediments to be included. Scaffold read depths were available for metagenomes but not for
metatranscriptomes.

Metagenomes and metatranscriptomes are prone to chimera production during assemblies of short
reads along the highly conserved 16S rRNA gene (17). We therefore implemented uChime (43) in mothur
(44) with the Silva Gold alignment to identify and remove a further 1.3% and 0.6% of possible chimeras
from metagenomes and metatrancriptomes, respectively. Further chimera checks are described below.
Taxonomic identifications were made for each sequence in the metagenomic and metatranscriptomic
data sets in mothur (44) for alignment, preclustering, and classification to silva.nr_v132 (45). Sequences
that were identified as chloroplasts, mitochondria, or eukaryotes (<1% of sequences) were removed.

BLASTn was used to determine the percent identity of each sequence to the single most closely
related 16S rRNA gene sequence from cultured archaea (4,170 sequences) or bacteria (22,150 sequences)
obtained from Arb-Silva. Only cultured archaea and bacteria with official names from the International
Journal of Systematic Bacteriology or the International Journal of Systematic and Evolutionary Microbiology
were included, excluding candidatus organisms or enrichments. Rather than relying on annotations of
separate archaeal and bacterial data into metagenomes and metatrancriptomes, sequences were queried
against a database with bacteria and archaea combined to get the top hit. We used a BLASTn
implementation parallelized for high-performance computation (HPC-BLAST) (46) on the Beacon cluster
(47) at the Joint Institute for Computational Sciences. The alignment results of HPC-BLAST are compatible
with those of NCBI BLAST.
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A few metagenomic and metatranscriptomic 16S rRNA gene sequences did not yield BLASTn hits and
so were not considered further. For sequences with query alignment lengths of <300 bp, percent
identity increased with decreasing alignment length, suggesting that these represented partial hits to
small conserved regions, so they were removed from the analysis. Short query alignment lengths could
also signify chimeras. Therefore, sequences with a <90% alignment length with respect to their closest
cultured relative were aligned with BLASTn to the SilvaNR database, containing environmental DNA
sequences. Sequences with <90% alignment to sequences in both the cultured and Silva NR databases
were considered to be chimeric and were removed from analysis. This removed 6% of the metagenomic
database, leaving 39,426 bacterial and 13,404 archaeal sequences from 1,504 metagenomes, as well as
7% of the metatranscriptomic database, leaving 9,396 bacterial and 3,863 archaeal sequences from 381
metatranscriptomes. Each remaining sequence was manually categorized into 1 of 14 environment types,
based on user-provided metadata (Tables S1 and S2), and posted publicly at https://github.com/adsteen/
quantifying_uncultured_microbes_2018.

16S rRNA gene sequences that shared more than 96.6% sequence identity with a cultured organism
were considered to be in the same genus, and sequences that shared at least 86% sequence similarity
were considered to be in the same phylum (12). These created “similarity bins” of cultured species to
genus, uncultured genus to class, and uncultured species at the phylum level and higher. For primer-
amplified, metagenomic, and metatranscriptomic data sets, the fraction of sequences in each similarity
bin was calculated for a given environment. In metagenomes for which the sequence read depth was
available, the fraction in each similarity bin was calculated as the sum of sequence read depths for each
similarity bin within each metagenome. These values were averaged for all metagenomes in each
environment.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
mSystems.00055-18.

FIG S1, DOCX file, 0.1 MB.

TABLE S1, DOCX file, 0.01 MB.

TABLE S2, DOCX file, 0.02 MB.

TABLE S3, DOCX file, 0.03 MB.

TABLE S4, DOCX file, 0.01 MB.
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